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Executive Summary 

 

In this deliverable the concept of Essential Extractive Variable (EEV) and Essential Artificial 
Light Variable (EALV) are explored in order (1) to propose variables able to quantify the 
impacts mineral exploitation has on the environment, and (2) to discuss essential variables 
related specifically to artificial light at night, with a focus on defining potential variables and 
discussion of the difficulties associated with their measurement. For extractives, the 
variables are proposed in the perspective of creating monitoring tools for the 
implementation of the Sustainable Development Goals (SDGs). Various workflows involving 
geospatial data are proposed, and one of the EEVs is implemented as an operational GIS 
workflow aiming to contribute to SDG 15 ‘Life on Land’. This workflow allows estimating the 
surface of forest that is covered by mining concessions in the Democratic Republic of the 
Congo (DRC). The workflow is operationalized using a UNIX-GDAL script for automation of 
data processing, and published on a Virtual Laboratory Platform (VLab), a Cloud service 
based access platform that facilitates accessing input and output data and re-using the 
algorithm.  
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Introduction 
 
Mineral exploitation has a high price in terms of environmental impacts and potential 
threats for the health and prosperity of local populations. In this deliverable the concept of 
Extractive Essential Variables (EEVs) is explored with the aim to propose variables able to 
quantify the impacts that mineral exploitation has on the environment. These variables are 
developed with a view to contribute to the Sustainable Development Goals (SDGs). The 
proposed framework of EEVs is based on the use of Earth Observation (EO) products. 
Fourteen candidate EEVs are proposed and classified into three categories, depending on 
the extraction method, the installation of the mining site and the ore processing technique. 
Several workflows involving geospatial data are proposed, and one of the variables is 
operationalized into a GIS workflow, which aims at assessing the surface of forest 
overlapped by mining concessions in the Democratic Republic of Congo (DRC). The workflow 
is implemented using a Virtual Laboratory Platform (VLab), which facilitates accessing input 
and output data and re-using the algorithm. This work is mainly based on literature review 
and on personal reflection, therefore it still needs to be completed and improved along with 
experts of the sector and other stakeholders involved in the definition of essential variables 
in other topics (e.g., Climate and Biodiversity).  
 
Light is one of the most important information sources available to organisms, and 
therefore strongly impacts behavior and physiology. For example, nearly all animals can be 
classified into the times in which they are active: diurnal (active during day), nocturnal 
(active at night) or crepuscular (active during twilight). For most organisms, light is the most 
important zeitgeber for the chronobiological processes that drive diurnal cycles and 
seasonal behavior (e.g. Gessler et al. 2017, Johansson & Köster 2019).  In fact, there are 
even circalunar processes that are driven by exposure to moonlight (e.g. Kaniewska et al. 
2015, Last et al. 2016). Changes to Earth’s natural cycles of light and darkness by the 
addition of artificial light can therefore have dramatic consequences (Navara & Nelson 
2007, Lunn et al. 2017), and light is therefore an essential variable of the Earth system. This 
text discusses essential variables related specifically to artificial light at night, with a focus 
on defining potential variables and discussion of the difficulties associated with their 
measurement. Variables related to natural light during daytime (e.g. solar insolation) drive 
weather and climate, and are therefore already established as essential climate variables. 
Moonlight is more variable, but because it comes from a single celestial source, moonlight 
can be treated in the same way as sunlight. Artificial light, on the other hand, is produced by 
uncountably many sources worldwide, for different reasons, at different times and 
intensities, and using different lighting technologies. We therefore start with an overview of 
how the extraordinary variability of artificial light complicates defining and measuring 
essential variables for artificial light. We then discuss possible essential variables for artificial 
light, divided into physical, social, and biological variables.  
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Essential Extractives Variables (EEVs) 
 

Background 
The extraction of minerals from natural deposits has been a constant in the history of 
human kind and one of the pillars supporting the economic and technological development 
we are benefitting today. But mineral extraction comes with a cost, which is mostly 
neglected due to the major benefits generated by this industry. In the form of raw material 
or processed ores, minerals are in every aspect of the daily life and the continuous demand 
fuels the quest for new lands to exploit, often generating land use conflicts with the existing 
soil occupation. Extraction and processing of minerals are associated with sustainability 
issues related to the use of natural resources in a way that will ensure their integrity to the 
benefit of future generations (IIED, 2002). Due to the destructive nature of mining activities, 
aquatic and land ecosystems are directly impacted; hence the need to include sustainable 
practices in the extractive field represents a prerequisite for the viability of this industry 
(Drielsma et al., 2016). These and other concerns have prompted the development of 
strategies to efficiently address the sustainability issues linked to mineral extraction and 
target the objectives of the Sustainable Development Goals (SDGs) and other policy 
frameworks. In this regard, one of the approaches considered is the concept of Essential 
Variables, largely used for climate monitoring and biodiversity. This section of the 
deliverable reports on developing indicators or Extractive Essential Variables (EEVs), which 
will assess the influence of mineral extraction on the area adjacent to the mine, the 
surrounding landscape and the ecosystems. The combination of Earth Observation (EO) 
products alongside additional ancillary data types, may allow the development of adequate 
instruments to quantify the impacts of extractive activities. GIS tools and spatial datasets 
are used as instruments for the implementation of extractive indicators and translated in 
the form of operation workflows. The outputs deriving from these workflows allow 
generating cartographic products, timely dashboards and supporting material for decision 
makers and stakeholders to ease the understanding of environment-related problematic 
linked to mineral extraction. 

 

Life cycle of an extractive project 
Previous to the exploitation of mineral deposits is the exploratory phase, which aims to 
detect the most profitable area for the development of the mining site. For the most part, 
these deposits are located in remote areas necessitating the construction of infrastructures 
and other facilities (roads, railways, access routes). Successively three phases can be 
identified in the process of mineral exploitation: extraction, mineral processing and waste 
handling. The first step is the extraction of the ore from the rock. In the case of open pit 
mines, the deposit is found near the surface and easily accessible by mechanical removal of 
rocks or through drilling and blasting to break the rocks. The size of the pit is linked to the 
availability of the mineral in the deposit and its accessibility. In general, when the amount of 
overburden extracted is superior to the amount of ore processed, the mine is no longer 
rentable. The ore extracted is successively processed through the use of chemical 
compounds.  
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Mining is a permanent commitment to the land and the production of waste is amongst the 
damaging outcomes of mineral extraction. The type and amount of waste generated are 
dependent from the geological characteristics of the ore deposit, the type of mine 
(underground or open pit) and the type of mineral being extracted (Durucan et al., 2006). 
The principal types of waste produced are:  

- Tailings: what remains after the process of extraction of the mineral from the 
ore/rocks. Those are mostly grounded rock mixed with different type of chemicals 
according to the process of extraction used.  

- Overburden: the soil and rock that need to be removed to access the mineral. It 
differs from tailing for being the layer of rocks covering the ore which is not 
processed but simply removed to access the mineral;  

- Waste rock: a rock that does not contain any mineral of interest. 
According to the type and use of the mineral resources extracted, the mineral industry can 
be divided into four subcategories: (1) energy mineral, (2) metallic minerals; (3) construction 
minerals; and (4) industrial minerals. The main techniques of extraction for metallic minerals 
such as iron, copper and zinc are both open pits and underground mines; while construction 
minerals, like calcium carbonate, are extracted mainly through quarrying. Depending on the 
technique used, mineral extraction can have different outcomes in terms of its footprint on 
the surrounding landscape (Awuah-Offei and Adekpedjou, 2011). 

 

Environmental impacts of mineral extraction 
Mining activities are responsible for a series of environmental impacts, which can vary 
according to the size of the mine and the nature of the deposit, its location, and the 
techniques and processes used to access the minerals (Ferreira and Garcia Praça Leite, 
2015). These impacts ultimately influence the area surrounding the extraction site by 
changing, in an irreversible way, the original state of these ecosystems.  
The ecological footprint of mines goes well beyond their perimeter and according to the 
distance from the mining site it is possible to determine a primary and secondary area of 
impact. The primary area represents the area directly impacted by the presence of the 
mine, processing facilities, roads, and energy transmission network. The secondary area 
concerns the zone near the mining site. It can be impacted at the level of its ecosystem and 
landscape integrity. The magnitude of the impacts on these areas decreases with increasing 
distance from the mining site (Frelich, 2014).  
Below are a few examples of negative impacts due mineral extraction:  
- Decrease of the value and utility of land for agricultural and forestry purposes. 
Vegetation will be gradually and incrementally removed to accommodate mines 
(Macdonald et al., 2015). Consequences of vegetation removal include increased soil 
erosion and differences between pre- and post-mining vegetative communities; 
- Disturbance to the flora and fauna of the area with consequent deterioration of the 
ecosystem integrity. Direct impact of surface mining would occur on wildlife. They include: 
injuries or mortality caused by mine-related traffic; direct loss of less mobile wildlife species; 
restrictions on wildlife movement created by fences, roads, spoil piles and pits; 
displacement from existing habitat in areas of active mining including abandonment of 
nesting and breeding habitats for birds; increased noise, dust and human presence (Frelich, 
2014). Loss of habitat can additionally lead to changes in species composition, as forested 
areas are converted to grassland after reclamation (Van Wilgenburg et al., 2013);  
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- Increased rate of erosion, sedimentation and landslide, representing a threat for the 
water resources and the integrity of the landscape. In open pit mines priority is given to 
the control of water entering the pit. A system of canalization is put in place to drain the pit 
from atmospheric precipitations. Additional measures are considered if the pit overlaps an 
aquifer to prevent flooding from groundwater. Pumping for removal of excess ground water 
in the mining pit can have consequences on the water table. This reduces the amount of 
water available to the base flow of surface watercourses that can ultimately affect water 
supplies for agricultural and human consumption (Karmakar and Das, 2012); 
- Risk of release of pollutants in the groundwater or superficial water. Mineral processing 
is related to the risk of acid drainage. Acid generation takes place in the PH range when iron 
sulphide minerals are exposed to and react with oxygen and water. Exposing these materials 
and breaking them up can facilitate this process. Mining exposes sulphide rich materials in 
the walls of open pits, mine tunnels, waste rock. If leaking in water body or transported by 
run off, it poses a threat to aquatic life and makes water unfit for human consumption 
(Vela-Almeida and Wyseure, 2016); 
- Degradation of the quality of life of local communities to the benefit of short-term 
welfare. Activities such as blasting, excavation, loading and hauling of overburden and coal, 
and wind erosion of disturbed land, produce fugitive dust. Nitrogen oxides are the principal 
fugitive gaseous emissions produced during surface coal mining operations (Hendryx, 2009). 
- Alteration of the watershed and hydrology of the basin. Local destruction of stream 
segments through burial beneath valley fills or converted to waste treatment systems in the 
form of ponds have an impact on the integrity and functioning of the basin. Furthermore, 
the removal of vegetation and the compaction of soil alters the pattern of the water flowing 
through the watershed, changing the composition of water and altering the chemistry of the 
downstream receiver streams (Akiwumi and Butler, 2008). 
 

Proposed EEV framework 
The concept of EV: a tool to characterize and predict the Earth’s 
systems development 
The first definition of an essential variable was provided by the Global Climate Observing 
System (GCOS) in the 1990s in the context of climate monitoring. It defines Essential Climate 
Variables as: άǇƘȅǎƛŎŀƭΣ ŎƘŜƳƛŎŀƭ ƻǊ ōƛƻƭƻƎƛŎŀƭ ǾŀǊƛŀōƭŜǎ ƻǊ ŀ ƎǊƻǳǇ ƻŦ ƭƛƴƪŜŘ ǾŀǊƛŀōƭŜǎ ǘƘŀǘ 
ŎǊƛǘƛŎŀƭƭȅ ŎƻƴǘǊƛōǳǘŜ ǘƻ ǘƘŜ ŎƘŀǊŀŎǘŜǊƛȊŀǘƛƻƴ ƻŦ 9ŀǊǘƘΩǎ ŎƭƛƳŀǘŜ”. The concept of essential 
variable derived from the need to have accurate and continuous information on the 
atmosphere, land, and oceans to monitor the Earth’s climate, and ultimately understand 
past, current and future climate variability (Bojinski et al., 2014; Brummitt et al., 2017). 
Later on, the concept of EVs, was expanded to other domains, such as ocean and 
biodiversity, to assume a broader definition more inclusive of other Earth’s systems: 
άƳƛƴƛƳŀƭ ǎŜǘ ƻŦ ǾŀǊƛŀōƭŜǎ ǘƘŀǘ ŘŜǘŜǊƳƛƴŜ ǘƘŜ ǎȅǎǘŜƳΩǎ ǎǘŀǘŜ ŀƴŘ ŘŜǾŜƭƻǇƳŜƴǘǎΣ ŀǊŜ ŎǊǳŎƛŀƭ 
for predicting system developments, and allow us to define metrics that measure the 
ǘǊŀƧŜŎǘƻǊȅ ƻŦ ǘƘŜ ǎȅǎǘŜƳΦέ (Blonda et al., 2016).  
In a context of changing environment, the use of essential variables is necessary to target 
the components of environmental systems on which variability can be observed and studied 
(Turak et al., 2016). The importance of understanding the dynamics of ecosystems allow to 
efficiently manage them and assess where the changes are occurring, at what rate and how 
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they will evolve in the future. The criteria followed for the development of essential 
variables are:  

- Relevance. The variable is able to characterize the system and be of use in assessing 
its changes; 

- Feasibility. Observing and deriving the variable is feasible on a global scale in terms 
of technical requirements. It is possible to collect the information linked to the 
variable by using proven and reliable scientific methods; 

- Cost effectiveness. Generate and archive data on the variable is affordable (Bojinski 
et al., 2014). 

 

Towards the implementation of EVs in the extractives field: a current 
state of knowledge 
Despite the potential of extractive activities to alter the surrounding environment in terms 
of natural ecosystems and socio-economic realities, a list of formal Extractive Essential 
Variables (EEVs) is not yet being determined. Out of the three sustainability pillars --social, 
environment, economic-- the environmental one is the most advanced in term of research. 
Numerous are the studies conducted to assess the impact of mineral extraction on the 
environment, they mostly target the fauna and flora and the disruption of land and aquatic 
ecosystems. Nonetheless there is a lack of cohesion between the scientific research and its 
use for the implementation of political frameworks for sustainability.  
The literature review conducted as part of this work shows a shift in thinking of the mineral 
industry, willing to abide by the definition and requirements of sustainable development as 
stated by the Brundtland commission. In the paper published by Azapagic (2004), the author 
introduces the idea of corporate sustainability, a concept encouraging mineral industry to 
tailor extractive practices oriented towards a more sustainable production. Presented in 
different guises, the concept of EEV emerges from this paper: the author’s approach is to 
distinguish the different phases of the extractive supply chain and identify sustainability 
issues related to each of these processes. A set of variables is identified to contribute to the 
characterization of the system in terms of key economic, environmental and social 
sustainability issues. 
Another relevant paper for the development of indicators for mineral extraction is 
presented by Marnika and Xenidis (2015). The study provides a list of indicators based on 
raw data to calculate qualitative and quantitative characteristics of the impact of mining 
activities in protected areas. The author provides a framework analyzing the different roles 
mineral extraction has on the social, economic and environmental fields and propose some 
indicators to assess their influence in each of these three fields.  
Different methodologies are used to estimate the impact of mineral extraction on natural 
systems. One of the approaches used, sees the integration of GIS and geoprocessing on 
aerial images to detect the changes on the landscape. Considering the vast extent of mining 
sites and the extent of the impacted zones, the use of satellite images can facilitate the 
assessment of the changes on the soil occupation. Relevant in this field is the study carried 
out by Santo et al. (2002) in Brazil where a detailed workflow is implemented to assess the 
changes on the landscape subsequent the installation of sand mining facilities. This 
workflow uses satellite images previous and following the installation of the mine thus 
considering the temporal dimension of the changes. The indicators selected to measure the 
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environmental changes of the area are: (1) total mining area; (2) former agricultural land 
converted into open pits, open water ponds and mining ancillary installations; (3) 
deforested areas; (4) channel river morphology modifications; (5) vegetation growth in 
reclaimed areas; and (6) mining encroachments on legally protected riverside zones. A 
similar and more recent study using satellite images as a tool, gives information on the 
changes on the hydrology of the area impacted by mining activities. The study conducted by 
Padmanaban et al. (2017), explores the use of remote sensing and vegetation indexes 
(NDVI) to assess the changes on the vegetation and the landscape over a claimed area. 
Remote sensing and GIS have proven themselves as advantageous over field monitoring to 
assess long to short term landscape dynamics. The study aims to (1) examine the short-term 
land use and land cover dynamics in a claimed area; (2) quantify the emergence and growth 
of wetlands in the area interested by the mine and identify potential subsidence spots; and 
(3) examine the vegetation dynamics following ground water table fluctuation and 
ecological stress. Both studies include image processing, image classification and indices 
calculations to assess the impact of mineral extraction on the landscape components.  
Based on what precedes, the current deliverable reports on the work that was conducted to 
develop an EEV framework. This framework aims to lay foundation for bridging the gap 
between (1) the previous researches conducted to assess the degree of environmental 
impacts of extractive industries and (2) the targets imposed by the SDGs. Environmental 
indicators for the extractive industry will represent the final output of a process unifying 
field-based observations and the political will for a sustainable and conscious use of natural 
resources for the social, economic and environmental welfare. 

Proposed EEVs framework  
The different components of the Earth’s systems – lithosphere, hydrosphere, biosphere and 
atmosphere, are interdependent and mutually affecting each other so that a change in one 
sphere results in changes in one or more of the other spheres. This interconnection is 
perceived in the overlapping of essential variables created for other domains. In the case of 
mineral extraction, the use of existing Essential Biodiversity Variables (EBVs) (CBD, 2013) 
was considered in order to assess the impact of mining on the biodiversity and ecosystem 
structure. In the same way, the proposed EEVs proposed for assessing the impact of 
extractive activities on the atmosphere, are shared with the essential climate variables 
(ECVs). The interconnection between EVs should reduce the amount of new and redundant 
indicators and highlight the multidisciplinary nature that SDGs should have in targeting 
multiples aspects of the same system. Figure 1 is a graphical representation of the logic used 
to develop different workflows and to derive EEVs. 
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Figure 1. Flowchart for the development of the EEVs framework 

 
In Figure 1 the blue boxes represent the anthropogenetic processes that are responsible for 
ecosystem degradation. Mineral exploitation has a negative impact on habitat, which will in 
turn affect species distribution. Similarly, mineral exploitation has a negative impact on 
ecosystems functions and structure, which leads to a loss of ecosystem services and 
productivity. The green boxes represent the footprint that mineral exploitation has on the 
ecosystems hydrology, soil quality and chemistry. 
 
Considering all of the above, the Extractive Essential variables proposed in this work were 
distributed into 3 classes or categories: installation and exploration phase, mineral 
extraction, ore processing. The reasoning behind the selective process was driven by three 
questions: “Why is it changing?”, “How is it changing?”, “What are the consequences?”. 
Through these questions it was possible to break up the phases involved in the extraction 
process and understand at what level they interact with the surrounding natural 
environment. As a consequence, it was possible to select aspects of an ecosystem 
susceptible to changes and determine possible indicators to assess these impacts.  
 
The first class of Essential Variables considers some of the impacts deriving from the 
explorative phase and the settlement of the mining site. Both these processes are 
responsible for changes in the ecosystem structure directly affecting natural habitats. This 
category will contain indicators relative to habitat fragmentation, changes in abundance of 
avian, terrestrial and endemic species.  
The second class of EEVs revolves around the mineral extraction process. The extraction 
method varying according to the nature of the mineral deposit and the mineral to be 
extracted can lead to different impacts on the ecosystems (Frelich 2014; Ferreira and Garcia 
Praça Leite 2015). By identifying Essential Variables within this category, it will be possible 
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to develop indicators to monitor changes in the hydrology of the area and the chemical 
composition of the atmosphere.  
A third class of EEVs will target the ore processing methods and some of the environmental 
issues such as water and soil pollution. 
 
The proposed EEV framework is from Ambrosone et al. (accepted by Geo-spatial 
Information Science). It is summarized in Table 1 and further described in detail. 
 
Table 1. Proposed EEVs framework 

Group of EEVs  EEV category (function of the ecosystem which is 

affected) 

EEV 

1. Variables related 

to the installation of 

the mining site 

   

 Land 1.1 Ecosystem structure 1.1 Degree of 

fragmentation 

  1.2 Sensitive species 1.2 Extinction risk 

index 

  1.3 Avian species 1.3 Population 

abundance 

  1.4 Terrestrial species 1.4 Population 

abundance 

  1.5 Forest 

 

 

1.6 Land use and agriculture 

1.7 Species habitat category 

1.5 Surface of forest 

lost 

 

1.6 Surface of crop lost 

1.7 Habitat loss 

2. Variables related 

to the extraction 

method 

   

 Water 

resources/Hydrology  

2.1 Mining related water use  2.1 Data on water 

extraction per year  

 

  2.2 Groundwater 2.2 Groundwater 

volume changes 

  2.3 Lakes and superficial 

water 

2.3 Changes in water 

surface, lake extent  

 Atmosphere 2.4 Atmospheric composition 2.4 Content of 

greenhouses gas and/or 

pollutants  

    

3. Variables related 

to the ore processing 

technique 

   

 Land 3.1 Soil chemical pollution 3.1 Changes in soil 

chemical composition 

    

 Water resources 3.2 Groundwater 3.2 Groundwater 

chemical pollution 
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  3.3 Superficial water 3.3 Superficial water 

chemical pollution 

    

 
 (*) Function of the ecosystem that is affected 

 
First group. Variables related to the exploration and installation of the mining site. 

This group of variables targets some aspects of the exploration phase and the installation of 
the mining site susceptible of altering the ecosystem structure. It targets land use conflicts 
deriving from the installation of the mining facilities such as the loss of forested areas, 
species habitats and agricultural dedicated areas. 

1.1 ς ecosystem structure category. Determines the degree of fragmentation of ecosystem 
following the installation of a mining site.  A large proportion of the world’s mineral and 
energy resources are found in forested regions, which are consequently subject to severe 
disturbance by surface mining. This can lead to alterations in the ecosystem structure, 
function and services (McGarigal, Cushman and Regan 2005; Layman et al. 2007).  

1.2 ς sensitive species category. Expresses the percentage (%) of the surface of habitat lost 
over the total area inhabited by a particular species as a consequence of the occupation by 
mining facilities. As the availability of accessible mineral deposits decreases, the exploration 
of remote areas holding minerals of interest increases. This can represent a threat for the 
conservation of isolated species. In particular extractive practices requiring blasting can 
irreversibly damage unique ecosystems and biodiversity. Metallophyte plants represent an 
example of threatened species because they thrive on mineral deposits (Ginocchio and 
Baker 2004; Saad et al. 2011). The indicator is calculated from the mining activity area and 
the area covered by the habitat of a species.  

ÍÉÎÉÎÇ ÁÃÔÉÖÉÔÙ ÁÒÅÁ

ÔÏÔÁÌ ÓÕÒÆÁÃÅ ÏÆ ÔÈÅ ÈÁÂÉÔÁÔ
ρππ 

 

1.3 ς avian species category. The loss or alteration of avian population habitats can lead to a 
decrease in the population abundance. Disturbances on habitat results in nesting sites loss, 
increased noise, habitat fragmentation (Kociolek et al. 2010; Van Wilgenburg et al. 2013). 
The indicator is a measure of the changes in the abundance of a given avian species as a 
consequence of the start of mining activities. 

1.4 ς terrestrial species category. Expresses the changes in the abundance of terrestrial 
species over the time following the start of extractive activities on the area. Mining has a 
direct impact on local habitat degradation through the removal of vegetation and soil. This 
can impact the mobility of terrestrial species, facilitate the introduction of alien species and 
other negative stress that affect the growth of populations. This can be reflected in a 
decrease in the population abundance (Kociolek et al. 2010; Bernhardt and Palmer 2011; 
Frelich 2014; Castro Pena et al. 2017).  

1.5 ς forest category. Expresses the percentage (%) of forest lost following the installation of 
the mining site. Vegetation will be gradually and incrementally removed to accommodate 
mining. Impacts associated with vegetation removal could include an increase in soil erosion 
and differences between pre-mining and post-mining vegetative communities. 

surface of forest lost (%)
ÍÉÎÉÎÇ ÁÃÔÉÖÉÔÙ ÁÒÅÁ

ÔÏÔÁÌ ÓÕÒÆÁÃÅ ÏÆ ÔÈÅ ÆÏÒÅÓÔÅÄ ÁÒÅÁ
ρππ 
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1.6 ς land use agriculture category. Extractive activities are often in conflict with existing 
land use, creating conflicts of interest between different soil occupations. Despite the 
temporal economic benefits associated with the mine, the economic loss for the local 
communities can be large depending on agriculture for their livelihoods. For the regions 
where, agricultural production represents the main economic activity, an increase in land 
degradation can affect the communities’ ability to sustain themselves. The indicator is 
calculated from the mined surface and the area covered by crops and represents the 
percentage (%) of crop surface lost following the installation of the mine (Waldner et al. 
2017).   

surface of crop lost (%)
ÍÉÎÉÎÇ ÁÃÔÉÖÉÔÙ ÁÒÅÁ

ÓÕÒÆÁÃÅ ÏÆ ÔÈÅ ÃÒÏÐ
ρππ 

 

1.7 ς species habitat category. Direct impact of surface mining would occur on wildlife. They 
include: injuries or mortality caused by mine-related traffic; direct loss of less mobile wildlife 
species; restrictions on wildlife movement created by fences, roads, spoil piles and pits; 
displacement from existing habitat in areas of active mining including abandonment of 
nesting and breeding habitats for birds; increased noise, dust and human presence (Frelich 
2014). This indicator expresses the percentage (%) of the habitat lost following the 
installation of the extractive site.  

habitat loss (%)
ÍÉÎÉÎÇ ÁÃÔÉÖÉÔÙ ÁÒÅÁ

ÔÏÔÁÌ ÓÕÒÆÁÃÅ ÏÆ Á ÓÐÅÃÉÅÓ ÈÁÂÉÔÁÔ
ρππ 

 

Second group. Variables related to the extraction method.  

The variables proposed in this group consider some of the impacts deriving from different 
extraction methods. In particular they address the effects on the hydrology of the landscape 
where the mine is located in terms of changes in the volume of groundwater and superficial 
water, rivers diversion.  

2.1 ς mining related water use category. Quantify the annual consumption of water related 
to mining activities. Water extraction and water diversion for the operations carried out by 
the mine can influence the amount of water available for other uses. The amount of water 
used by the mine and the impacts they will have on the overall hydrology, depends on the 
type of the mine and the extraction method. Data on water extraction and water use will 
provide information on the availability of fresh water in the basin. 

2.2 ς groundwater category. Mining related activities are responsible for influencing the 
groundwater volume (Zhao, Ren and Ningbo 2017). In the case of open pit mines, measures 
are taken to prevent water from accumulating in the pit. In the case of a pit overlapping an 
aquifer, the water is pumped out to prevent flooding from groundwater. This practice is 
responsible for fluctuations of the water table and this can reduce the amount of water 
available to the baseflow of surface water courses. 

2.3 ς lakes and superficial water category. Mineral activities are responsible for alterations 
of the hydrology of the region and consequently the surface water will be affected. 

2.4 ς atmospheric composition category. Expresses the dispersion of dust, pollutants and 
greenhouse gases in the air within the mining facilities. Activities such as blasting, 
excavation, loading and hauling of overburden and coal, and wind erosion of disturbed land, 
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all produce fugitive dust (Hendryx 2009). Nitrogen oxides are the principal fugitive gaseous 
emissions produced during surface coal mining operations (Oluwoye et al. 2017).  

Third group. Variables related to the ore processing. 

The variables proposed for this group relate to some aspects of the ore processing phase 
that vary according to the nature of the mineral deposit being exploited. Some of the issues 
taken in consideration are the contamination of water resources and soil by metals’ 
leachability, dust and pollutant dispersion from blasting.  

3.1 ς soil chemical pollution category. Is associated with the potential dispersion of 
pollutants and chemical substances in the soil as a consequence of leachability of waste rock 
disposal sites (Asami 1988). In calculating this indicator some parameters as waste rock 
leachability, coefficient of permeability of the soil should be taken into consideration.  

3.2 ς underground water pollution category. Ground water pollution can occur directly or 
indirectly as a consequence of surface mining. Direct pollution can occur from diversion of 
contaminated drainage from the mine or acid mine drainage. This pollution will pose danger 
for the entire basin  

3.3 ς superficial water pollution category. Mineral processing is related to the risk of acid 
drainage. Acid generation takes place in the pH range when iron sulphide minerals are 
exposed to and react with oxygen and water. If leaking occurs in a water body or is 
transported by run off it can pose a threat to aquatic life and make water unfit for human 
consumption (Naicker, Cukrowska and McCarthy 2003; Eisler and Wiemeyer 2004). 

 

 

Links with SDGs 
The EEVs proposed above can be linked to different SDGs, targets and indicators. This 
linkage is summarized in Figure 2. 
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Figure 2. Link between the proposed EEVs framework and SDGs 

 

Workflow implementation 
The SDG15, “life on land”, aims to preserve and restore key terrestrial habitats for 
biodiversity as well implements sustainable land management in order to combat 
desertification, restore degraded forests and halt the destruction and unsustainable 
exploitation of existing forests.  
As mentioned previously, mineral extraction has an important impact on terrestrial 
ecosystems. In view of attaining the targets fixed by the SDGs for terrestrial biodiversity and 
ecosystem conservation, a workflow assessing the impact of mines on forest was developed 
(Figure 3, box 1a). This workflow allows quantifying the surface of forest lost as a 
consequence of the mine installation by comparison of two sets of data prior and 
subsequent the mineral exploitation. The indicator was developed starting from the 
assumption that mining sites and forests cannot coexist for the same site and that the 
presence of the mine corresponds to the loss of an area of the forest. The region chosen for 
this work is the Democratic Republic of Congo (DRC). This indicator does not exist yet but 
similarities can be found with the indicator 15.3.1 “proportion of land that is degraded over 
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total land area” proposed for the SDG15 and available on the UN SDG metadata repository 
(https://unstats.un.org/sdgs/metadata/files/Metadata-15-03-01.pdf ).  

 
Figure 3. Implemented workflow to assess the surface of forest covered by mining concessions in DRC 

(1a), and possible extension of this workflow to monitor forest loss over time (1b) 

The indicator is calculated from geospatial data of the forest cover and the surface occupied 
by mining concessions. The output of the workflow is derived from a spatial overlap 
between digital polygons of the DRC mining cadaster (CAMI 2018) and TIFF files 
representing the forest cover. The value of the indicator, given in km2, is computed as the 
surface of forest occupied by mining concessions. Both tree cover and mining concessions 
are for the year 2015. 
The data for the forest cover are obtained from the website Global Forest Change from 
University of Maryland, Department of Geographical Sciences 
(https://earthenginepartners.appspot.com/science-2013-global-
forest/download_v1.2.html). The tree cover is defined as canopy closure for all vegetation 
taller than 5m. The values of forest cover for each pixel of the image are encoded as a 
percentage per output grid cell which values range between 0 and 100. The size of the pixel 
is 25*25 m. The data for mining concessions are provided by the mining cadaster from 
Democratic Republic of Congo, provided by Ministry of Mines in DRC. Each concession is 
represented as a polygon (Figure 4).   
The workflow, initially tested on ArcMap 10.3.1, consists of a series of geoprocessing tools 
linked together to carry out a complete data treatment from raw data to the outputs.  
The workflow involves several steps, including: (1) download forest cover on the country 
extent; (2) mosaic forest cover tiles; (3) dissolve all mining concessions into one polygon in 
order to avoid topological error and to compute actual surfaces; (4) clip forest data by the 
dissolved mining concession; (5) compute the surface of forest currently recognized that is 
covered by mining concessions. A script was conceived to automatize the process of data 
treatment. The language chosen to develop the script to automatize the data treatment is 
Unix. The GDAL library (Geospatial Data Abstraction Library) for reading and writing raster 
and vector geospatial data was chosen to develop the script. A bash approach was 
privileged over a python script to avoid the installation of complex libraries for data 
treatment. The outputs are computed and printed in a text file.  

https://unstats.un.org/sdgs/metadata/files/Metadata-15-03-01.pdf
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.2.html
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.2.html
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The script is presented in detail in Annex 1. It is composed of: 
- A central part. The extent and resolution of the TIFF image are obtained with the 

command gdalinfo. Successively a raster is created from the vector containing the 
information for the mining concessions with the command gdal_rasterize. The value 
attributed to this raster is 0 for absence of polygons and 1 for presence of polygon. 
At the end of this steps a raster with the same extent and resolution of the TIFF 
image of the forest is obtained. The command gdal_calc.py allows combining the 
new concessions raster with the raster of forest cover by multiplying the number of 
pixels of the two rasters. In an analogous approach to the Extract by Mask used in 
ArcGISTM, a new raster is created containing the area of the forest overlapping the 
concessions. 

- The extent of the surface occupied by the mines is calculated in the newly created 
raster. This value is obtained by calculating the mean value of pixels present in the 
raster, multiply it for the total of pixels of the raster, multiply for the size of each 
pixel (25m*25m) and divided by 10-6 to obtain the surface of the forest in km2;  

- A ‘for’ loop. The TIFF files necessary to cover the total extent of DRC are inserted 
into a ‘for’ loop to automatically execute the central part of the script for each image 
in the input variable.  

- The outputs. A variable containing the results of every ‘for loop’ is created. The final 
indicator is obtained by summing up the outputs of every single loop. The result 
obtained for the datasets provided in 2015 is: 143’617 km2 (Figure 4). 

 

  
Figure 4. (a) Forest cover and mining concessions (in pink) in DRC (2015).  (b) Result of the 

overlap analysis between the two layers 
 
Moved by the need of sharing all these resources in an accessible way and re-using the 
algorithm with other parameters, the script was published into the Virtual Laboratory 
Platform (VLab) developed by the Consiglio Nazionale delle Ricerca (CNR). Initially 
developed in the frame of H2020 ECOPOTENTIAL1 the VLab has been improved during 
H2020 GEOEssential. It is interoperable with the Global Earth Observation System of 

 
1 http://www.ecopotential-project.eu  

http://www.ecopotential-project.eu/


  

19  

Systems (GEOSS) and it includes a graphical interface. The process of uploading the script on 
the VLab platform required its publication on the cloud where the input data and the code 
were stored. The intermediate platforms used for this purpose were GitHub2 and Docker 
Hub3. The use of Docker for the purpose of this work is to create the image supporting the 
model based on the implemented script. With the term ‘image’ it is intended a virtual 
environment containing an operative system (Ubuntu in our case), data files and the 
libraries needed to run the code. The Docker container and its files were uploaded on 
GitHub, which now contains all the elements necessary to run the model. 
  

Mineral extraction and its surrounding: workflow 
propositions to determine the interaction of mineral 
extraction on ecosystems 
In this section we propose 6 additional workflows (see Annex 2), based on geospatial data 
and quantitative information that could help to operationalize the EEVs presented above. 
These workflows are still at the state of preliminary research, and they would deserve 
further work and implementation. However they provide primary elements of thought in 
the context of operationalizing an EEV framework.  
When considering the sustainability of mineral activities, two aspects should be taken into 
account: (1) the life cycle of natural products including the extraction and processing of the 
natural resource; (2) the life cycle of the mine and the production facilities. The 6 additional 
workflows that are proposed integrate these two aspects. Some of the data source that are 
considered for the design of these workflows are:  (1) direct in situ biological and ecological 
monitoring and data collection to assess the abundance of species, their distribution and 
their behavior in their natural habitat; (2) remote sensing for the collection of data relative 
to the ecosystem attributes; (3) maps of land use and land occupation to determine the 
different uses of the study area. 
The 6 proposed workflows are listed below. They are described in more detail in Annex 2: 
- Mineral extraction and biodiversity: surface of a species habitat lost due to the presence of 
the mine 
- Mineral extraction and agricultural activities of the surrounding area; 
- Mineral extraction and areas of interest for the protection of mountain ecosystems; 
- Mineral extraction and the hydrography of the landscape; 
- Mineral extraction and habitat fragmentation; 
- Mineral extraction and endemic species: the case of metallophyte plants; 
 

Essential Artificial Light Variables (EALV) 
 

 
2 GitHub is an open source project that allows managing and storing revisions of projects. Each project requires 
the creation of a repository where all the input data and the code are stored. The repository can be access 
through a URL. A desktop version of GitHub was downloaded. Changes made in the code locally are directly 
transferred on the corresponding repository on GitHub. 
3 Docker Hub is a cloud-based registry service that allows creating code repository, building, testing, sharing 
and managing images. 
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The challenges of defining essential variables for 
artificial light  
A main reason that defining light variables is challenging is due to the directional nature of 

light. In contrast, consider scalar variables such as air or water temperature or oxygen levels. 

These variables may change over time, but for any given location in space they are defined 

by a single value. Essential variables that are vector quantities add an additional 

complication, because in addition to a value, a direction must also be specified. For example 

essential climate variables related to wind must specify both wind speed and direction. In the 

case of light, however, there is not a single direction in which the light is traveling, but 

instead a different value of radiance (brightness) in every possible viewing direction (i.e. over 

4π solid angle). This radiance can easily change by an order of magnitude when viewing a 

white vs dark colored object, and many orders of magnitude in the case of viewing directly 

towards a light source. The amount of artificial light present can also change by several 

orders of magnitude over a distance of only a few centimeters, from a position in a beam of 

light into a nearby shadow. 

 

Essential variables for light are also challenging to define due to the fact that light consists of 

a spectrum. It is possible to define variables based on human vision (e.g. using Vλ), but this 

will not be appropriate if the variable is meant to characterize the impact of light on other 

animals or plants. Even for human beings, the daytime spectral response that defines Vλ does 

not match the response of the visual system at the lower (mesopic or scotopic) light levels 

common at night, nor does it match the response of the human chronobiological system. 

Some lamps also emit ultraviolet (UV) light, such as mercury vapor lamps or UV-driven 

white LED. Ultraviolet light is not visible to humans, but can have major environmental 

impact due to its effect on animals, especially insects. 

 

An idealized understanding of artificial light would consist of a complete characterization of 

the light field at all points in the Earth system. This would mean that for any given position, 

we would know the spectrally resolved radiance in all directions and at all wavelengths (or 

rather at least wavelengths ranging from the UV to the near infrared). Such a complete 

characterization is of course not possible to achieve experimentally. Therefore, when defining 

EVs in the following sections, the focus is on variables that are both feasible to 

experimentally measure and relevant for understanding changes to the Earth system. Both 

ground and space-based measurements are considered, but the main focus is on measures that 

can be remotely sensed. 

 

Physical essential variables for artificial light 
Several essential variables describe the physical state of areas of Earth, for example 

impervious surface or mined area. In line with these EVs, an obvious EV for artificial light 

would be lit area. This makes intuitive sense when one examines a satellite image of Earth at 

night: one may immediately ask what fraction of Earth’s area is lit versus unlit? 

Unfortunately, the answer to this question will depend on the resolution of the instrument 

used to make the imagery. As resolution is reduced, lights appear to take up greater area 

(Figure 5). While cities appear completely lit on satellite imagery, the roofs of buildings are 

generally unlit. Using high resolution aerial data, Hale et al. (2013) reported that only 8% of 

the total land area of Birmingham (UK) was lit brighter than 10 lux, and even in densely built 

areas only about 30% of areas were this bright. 
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Figure 5: Images of Berlin’s Tegel airport from sensors with three different resolutions. (a) Defense 

Meteorological Satellite Program-Operational Linescan System (DMSP); (b) VIIRS DNB; (c) aerial 

photography. The inset at the bottom left shows the area of Berlin displayed in each of the three 

panels. The resolution of DMSP was too coarse to identify light sources smaller than the city scale. 

Image and data processing by NOAA’s National Geophysical Data Center. DMSP data collected by 

the U.S. Air Force Weather Agency. Figure and caption reproduced from Kyba et al. (2015). 

 

Despite this problem, it is clear that estimated lit area is a useful variable. For example, Kyba 

et al. (2017) compared satellite imagery taken in 2016 to that taken in 2012 with the Visible 

Infrared Imaging Radiometer Suite Day/Night Band (DNB). They showed that the lit area of 

Earth increased on average by 2.2% per year during this period, with much faster growth in 

many developing countries (e.g. 19% per year in Ghana). Unfortunately, it is not possible to 

directly compare data taken with satellite instruments with different resolutions. Perhaps one 

solution to this problem could be to project such data into standard resolutions at which it is 

to be measured (e.g. 1m2, 100 m2, 1 ha, and 1 km2). Even if this was done, one must still 

decide on what brightness level should count as “lit”. 

 

The question of what brightness counts as lit is further complicated due to the wide variety in 

spectrum of lighting sources, combined with the spectral resolutions of different radiometers. 

In contrast to daytime, where the entire scene is lit by a blackbody source (the sun) with a 

stable and known spectral distribution, artificial urban lighting is characterized by lights of 

different colors, as can be seen in the right hand panel of Figure 5. Different artificial light 

sources have vastly different spectra (Figure 6). Because of this, space-based broadband 

radiometers measure different radiances when viewing the same city lights (Sánchez de 

Miguel et al. 2019). In addition to complicating the problem of setting a threshold to define 

an area as “lit”, this means that broadband radiance from different satellite instruments 

cannot be directly compared. 
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Figure 6: Spectra of two commonly used light sources compared in both cases to the human photopic 

action spectra (grey). A high pressure sodium lamp is shown above, and a 4300K “white” LED 

(below). Images generated using the spectral tool at https://fluxometer.com/, licensed for reuse under 

CC BY 4.0 by the fluxometer project. 

 

Let us now suppose that a specific spatial resolution and band (or set of bands) was selected 

in order to define an essential variable for upward artificial light emissions. Two additional 

questions then arise: what time (or times) should the measurements be made, and at which 

angle? The acquisition time is an issue because urban light emissions are known to decrease 

as the course of the night goes on (Dobler et al. 2015, Kyba et al. 2015, Meier et al. 2018). 

Furthermore, at high latitudes, early or late acquisition times will restrict the times of year 

during which data can be taken (due to the long summer twilight). Imaging angle can be 

important, particularly in urban contexts, as tall buildings can screen light emissions, making 

them not visible in certain directions (Coesfeld et al. 2018).  

 

While all of the issues discussed above will certainly complicate efforts to define essential 

variables for upward emissions of artificial light, one should not give up hope. Keep in mind 

that the alteration of the night environment compared to the natural starlit state is extreme: an 

illuminated street is typically over 100 times brighter than full moon illumination, and 10,000 

times brighter than illumination from starlight alone (Hänel et al. 2018). Any compromise 

decision on essential variable definitions will not be perfect, but nevertheless be a useful 

variable. 

 

The essential variables described thus far were defined in ways amenable to measurement via 

remote sensing from space. However, animals, plants, and humans rarely experience light 

emitted upwards. Rather, we generally experience light emitted or scattered sideways. 

Essential variables related to upward light therefore don’t tell the whole story with regard to 

consumption of light, or negative environmental impacts of light (light pollution). It is 

possible to quantify light exposure for given locations using photographic or spectrographic 

techniques, but the number of locations that can be sampled is much lower, as it requires an 

observer to travel to the site with measurement equipment. 

 

It is possible to obtain multispectral radiance data for half of the unit sphere (i.e. half of all 

possible viewing directions) using either a camera with a fisheye lens, or by making a mosaic 

of a large number of images with a wide-angle lens. This technique has been used extensively 

for measurement of skyglow, the artificial brightening of the night sky (e.g. Duriscoe et al. 

2007, Kolláth 2010, Jechow et al. 2018). The technique can be extended by taking additional 
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photographs to include upward directed light, therefore measuring light exposure from all 

viewing directions. Either or both of these measures could be considered as a possible 

essential variable for artificial light. 

 

In both cases, questions of spectral response are again problematic. One solution could be to 

specify the spectral bands over which the measurement is to be made. Measurements could 

then be taken using either specified filters (for a camera on a robotic mount) or by making an 

educated guess about the spectrum of the sources, and correcting the measurement via 

synthetic photometry (see Sánchez de Miguel et al. 2019). 

 

Environmental factors, particularly clouds, snow cover, and foliage presence or absence, can 

have extraordinarily large impacts on the light exposure at both ground level and for 

observations from space (Levin 2017). Clouds have especially dramatic effects, as they 

darken the environment when artificial light is not present (Jechow et al. 2019), but brighten 

it dramatically near light sources (Kyba et al. 2015). It is therefore necessary to specify how 

often or under what meteorological conditions essential variables for artificial light are to be 

recorded. 

 

All -sky or all-directional imaging does not lend itself easily to permanent monitoring, and 

thus has seen limited use thus far. A more common method of measurement has been to 

observe only the sky radiance at zenith, using a fixed device (e.g. Kyba et al. 2015). 

Designating zenith brightness as an essential variable for light would therefore be sensible, 

but two issues remain. First, as in the other cases, spectral response matters. This is 

particularly the case at the moment because of the worldwide transition to white LED light 

sources (Sánchez de Miguel et al. 2017). Second, zenith brightness is less effective as a proxy 

for the environmental impact of light than all-sky brightness (Duriscoe 2016), so this 

essential variable would be a complement rather than replacement for all-sky or all-

directional imaging. Hänel et al. (2018) recently reviewed techniques for the measurement of 

sky brightness, and provide further detail on the points discussed above. 

 

Social essential variables for artificial light 
Artificial light presents a bit of a paradox from a social perspective, because it is 

simultaneously a necessity of urban life and also a pollutant. Artificial light allows economic 

and other activity to take place during the night, and therefore provides a benefit. Global 

inequalities are therefore highlighted in nighttime imagery, as millions of people worldwide 

do not yet have access to light at night (Pritchard 2017). One may therefore naively suggest 

that “lighting availability” could be considered an essential social variable for light. This 

parameter would be closely related to the “lit area” discussed above, but presumably only 

evaluated in inhabited areas. However, basing such a variable on remotely sensed data may 

not actually be a good idea for a number of reasons. 

 

The only currently available global satellite dataset of night lights is acquired in the early 

morning, with a typical overpass time near 1:30 am (Elvidge et al. 2017). Since most people 

are asleep at this time, it is unclear that the presence of light is actually providing much 

public benefit. While light is popularly believed to reduce crime, evidence for this 

assumption is lacking (e.g. Steinbach et al. 2015). Since many communities turn off 

streetlamps late at night, current night light remote sensing instruments may overestimate 

lighting poverty. Furthermore, the mere presence of upward light emissions says nothing 

about the quality of the lighting at street level. 
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While much of the world experiences lighting poverty, a large fraction of the world’s urban 

population experiences significant amounts of light pollution, particularly in wealthy 

countries. In 2016, it was estimated that 60% of Europeans and 80% of North Americans 

could not see the Milky Way from their home, due to artificial sky brightness (Falchi et al. 

2016). To a large extent, this sky brightness may be blamed on poorly designed lamps, and 

non-essential lighting for purposes such as advertising. However, it is likely the case that 

even street lighting is brighter than is necessary. Fotios and Gibbons (2018) recently 

examined lighting policies and norms, and found that “recommendations for the amount of 

light do not appear to be well-founded in robust empirical evidence”. 

 

A useful essential variable for light may therefore be per capita light emissions. Such a 

variable would indicate both for areas that are likely suffering from lighting poverty as well 

as areas that are likely overlit. As in the previous section, the question of at which resolution 

this variable should be specified must be decided. Mixed pixels that contain both residential 

areas and commercial centers may present a challenge in the interpretation of this variable.  

 

Biological essential variables for artificial light 
Several factors make developing sensible essential biological variables for light challenging. 

For example, artificial light at night can have dramatic effects on animal and plant life, and 

changes to behavior or food webs can ripple out to affect other animals or plants that were 

not exposed to the light (e.g. Knop et al. 2017). Organisms differ in which spectra most 

strongly affect them (although shorter wavelengths are generally the most problematic, see 

Longcore et al. 2018), so the biological impact of a lamp may depend strongly on which 

species is under consideration. Individuals exposure to light may furthermore be poorly 

related to remotely sensed data, particularly at low spatial resolution, as animals may avoid 

the brightest areas (e.g. Hale et al. 2015, Raap et al. 2018). Finally, the biological impact of 

artificial light also depends on the context. An additional lamp installed in an urban context 

will have much less biological impact than the same lamp installed in the middle of a forest 

or wetland. Despite the challenges, developing sensible metrics for the biological impact of 

artificial light should be pursued, as light is an important factor in global change (Davies & 

Smyth 2018). 

 

There is one biologically based variable that also has social significance: the number of stars 

that are visible to the unaided human eye. While observations of sky brightness with 

radiometers are generally easier to work with than visual observations, they are not well 

suited for predicting how the sky will appear to a human observer (Kyba 2018). The number 

of visible stars may be estimated via several citizen science techniques, so this variable can 

be relatively easily measured in any areas that humans regularly inhabit at night. 

 

Conclusion and future outlook 
 

In this deliverable the concept of essential variable was applied to the context of mineral 
exploitation and artificial light monitoring.  
For extractives a set of candidate EEVs were proposed and classified into different 
categories depending on the installation of the site mine, the extraction method and the ore 
processing technique. One of the EEVs was implemented as a workflow. This workflow, 
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based on quantitative information and geospatial data, was developed and operationalized 
with the aim to assess the surface of forest covered by industrial mining concessions at 
national level in DRC. The workflow was first tested in ArcGISTM and in a second step it was 
published into a Virtual Laboratory Platform (VLab) in order to facilitate access to input and 
output data and to re-use the algorithm with other data and other parameters. Mining 
concessions data were obtained from the DRC Ministry of Mines while forest cover were 
retrieved from EO data. This workflow targets SDG15 ‘Life on land’ and presents similarities 
with indicator 15.3.1 “proportion of land that is degraded over total area”. It is also related 
to Aichi Biodiversity Target 5.  
We showed in this work that the definition and operationalization of EEVs could be useful in 
the context of mineral exploitation, as it would help to translate sustainability issues into a 
relevant and realistic measurement of environmental performances. In total 7 workflows 
were proposed to this direction. However, we noticed that in practice standardization of 
data is needed to ensure its quality and comparison with analogous set of data 
representative of other regions, with a view of creating a common monitoring framework 
across countries that exploit mineral resources. Addressing this issue requires considering 
the differences in terms of technology and infrastructure advancement of the regions of the 
world and therefore promoting doable data treatment and collection methods.  
Another issue encountered in the development of the workflow was the lack of up-to-date 
data on mineral concessions and their locations. Despite most nations provide a cadaster of 
the mines present on their territory, the data are not always available for download. 
Mineral industry is trying to be more transparent in its activities and performances but the 
lack of data on mineral activities, still represents a major problem obstructing the 
deployment of efficient monitoring tools and indicators. 
Equally difficult was to find recent data on forest cover and data for species distribution and 
their habitat. Concerning the avian species, data on their habitat, distribution and 
abundance are available on the Boreal Avian Modeling Project4 but not as an open source. 
The IUCN website provides a platform where is possible to obtain shapefiles on the 
distribution of a determined species but no additional information on the abundance is 
available. This data source was of use in trying to implement the workflow assessing the 
metallophytes species distribution but the lack of information on the abundance, rendered 
complicated the identification of species hotspots to quantify to what extent a mine 
overlapping a portion of the habitat could be dangerous for the survival of the species. 
Finally, the work on EEVs is mainly based on literature review and on personal reflection, 
therefore it still needs to be completed and improved along with experts of the sector and 
other stakeholders involved in the definition of essential variables in other topics (e.g., 
Climate and Biodiversity). 
 
For artificial light monitoring, two main reasons why defining light variables is challenging 
were discussed: the directional nature of light, and the fact that light consists of a spectrum. 
It was shown that an idealized understanding of artificial light would consist of a complete 
characterization of the light field at all points in the Earth system, which is not possible to 
achieve experimentally. Nevertheless, possible artificial light essential variables were 
proposed, divided into physical, social and biological variables. Their implementation was 
discussed as well as possible limitations and issues.  

 
4 http://www.borealbirds.ca/index.php/avian_data  

http://www.borealbirds.ca/index.php/avian_data
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Finally, note that both the EEVs and EALVs could become part of a broader category of EVs 
linked to socio-economical essential variables which are most needed in the global effort to 
define for instance indicators for the SDGs. 
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ANNEX 1: Script developed to monitor the 
surface of forest covered by mines in DRC  
 
#!/bin/bash 
tar -zxvf concessions.tar.gz 
VECT="concessions_agregees_2015_one.shp" 
vec_RAST=("Hansen_GFC2015_treecover2000_00N_010E.tif" 
"Hansen_GFC2015_treecover2000_00N_020E.tif" 
"Hansen_GFC2015_treecover2000_10N_020E.tif" 
"Hansen_GFC2015_treecover2000_10N_030E.tif" 
"Hansen_GFC2015_treecover2000_10S_020E.tif") 
vec_OUT=("concessions1.tif" "concessions2.tif" "concessions3.tif" "concessions4.tif" 
"concessions5.tif") 
# Create a counter to dynamically create vect_OUT 
cnt=0 
# Create an empty rast_sum variable 
sum_sum=0 
# Create an empty detailed_sum_rast.txt file 
echo "" > detailed_rast_sum.txt 
 
for i in "${vec_RAST[@]}" 
do 
    # increment the counter 
    ((cnt+=1))    
    RAST=$i 
    echo "* processing: $RAST" 
# Get extent 
    meta=`gdalinfo $RAST | grep 'Lower Left' | sed 's/Lower Left  (//g' |  sed 's/) (/,/g'` 
    w=`echo ${meta}| awk -F ',' '{print $1}'` 
    s=`echo ${meta}| awk -F ',' '{print $2}'` 
    meta=`gdalinfo $RAST | grep 'Upper Right' | sed 's/Upper Right (//g' | sed 's/) (/,/g'` 

http://dx.doi.org/10.1016/j.biocon.2016.08.019
http://dx.doi.org/10.5751/ACE-00585-080209
http://dx.doi.org/10.1080/02508060.2016.1159077
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    e=`echo ${meta}| awk -F ',' '{print $1}'` 
    n=`echo ${meta}| awk -F ',' '{print $2}'` 
     
# Get resolution (necessary to use the -tap option to guarantee proper overlay with RAST) 
    meta=`gdalinfo $RAST | grep 'Pixel Size' | sed 's/Pixel Size = //g' | sed 's/(//g' | sed 's/)//g' 
| sed 's/ - /, /g'` 
    rez=`echo ${meta}| awk -F ',' '{print $1}'` 
 
# RASTerize VECT as 1 overlaying perfectly RAST using information just collected 
    rm -f concessions$cnt.tif # Remove the file if it already exists 
    gdal_rasterize -te $w $s $e $n -tr $rez $rez -tap -burn 1 -init 0 -co COMPRESS=LZW $VECT      
concessions$cnt.tif 
     
 # Combine both rasters 
    rm -f masked_$RAST # Remove the file if it already exists 
    gdal_calc.py -A $RAST -B concessions$cnt.tif --co COMPRESS=LZW --
outfile=masked_$RAST --calc="A*B" 
     
  # Calculate pixels sum, multiply by surface (km2) and take percentage into account 
    stat=`gdalinfo -stats masked_$RAST | grep 'Size is ' | sed 's/Size is //g' |  sed 's/) (/,/g'` 
    xpx=`echo ${stat}| awk -F ',' '{print $1}'` 
    ypx=`echo ${stat}| awk -F ',' '{print $2}'` 
    cellmean=`gdalinfo -stats masked_$RAST | grep 'STATISTICS_MEAN=' | sed   
's/STATISTICS_MEAN=//g' |  sed 's/) (/,/g'` 
    rast_sum=`echo $cellmean*$xpx*$ypx*625/100/1000000 | bc` 
# Write the sum of each loop in a detailed file 
    echo $rast_sum >> detailed_rast_sum.txt 
# Sum up the result of each loop 
    sum_sum=`echo $sum_sum+$rast_sum | bc`     
done 
# write the total sum in a file 
echo $sum_sum > rast_sum.txt 
 

 

ANNEX 2: Workflow propositions to 
determine the interaction of mineral 
extraction on ecosystems 
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Mineral extraction and biodiversity: surface of a species 
habitat lost due to the presence of a mine 
The present workflow is proposed to build an indicator addressing the SDGs goal 15 “Life on 
land” in the attempt to preserve the forest ecosystems and the role they play as habitat for 
terrestrial species. This indicator can also apply to Aichi Biodiversity Target 5 aiming to 
reduce the loss of natural habitats. The workflow proposed quantifies the habitat of avian 
species lost after the installation of a mining site. The consequences of habitat loss are 
species specific: some avian species avoid edge habitat created from segmentation for 
reasons such as microclimatology or increased predation and other species, preferring early 
successional habitats, will thrive as a consequence.   
The indicator derived from the workflow will be the result of a spatial overlap between 
polygons representing the habitat of an avian species and a raster or other data type 
identifying the surface occupied by the mine and its facilities.  
Inputs  

- Mining surface extent  
- Birds’ habitat surface: One possible data source is the data from the Boreal Avian 

Modeling Project (http://www.borealbirds.ca/index.php/avian_data), available on 
request with additional information on the abundance.  Another source of layer is 
represented by the IUCN website that provide shapefiles on the distribution area of 
a species (http://www.iucnredlist.org) 

Algorithm 
- Download input layers 
- Intersect of the input data (e.g., ArcGISTM analysis tools Ą overlay Ą intersect) 
- Perform zonal statistic between the two areas to obtain the area of the habitat 

intersecting the mine facilities (e.g., ArcGISTM spatial analyst tools Ą zonal Ą zonal 
statistics)  

Output 

- A number representing the surface of habitat lost 
- A map of the mine zone overlapping the natural habitat. 

 

Mineral extraction and agricultural activities of the 
surrounding area 
The present workflow aims to create an indicator suitable for the SDG 2 “End hunger, 
achieve food security and improved nutrition and promote sustainable agriculture” and in 
particular it could address the target 2.3 which aim to άŘƻǳōƭŜ ǘƘŜ ǇǊƻŘǳŎǘƛǾƛǘȅ ŀƴŘ ƛƴŎƻƳŜǎ 
ƻŦ ǎƳŀƭƭ ǎŎŀƭŜ ŦƻƻŘ ǇǊƻŘǳŎŜǊǎ ώΧϐ ǘƘǊƻǳƎƘ ǎŜŎǳǊŜ ŀƴŘ Ŝǉǳŀƭ ŀŎŎŜǎǎ ǘƻ ƭŀƴŘ ώΧϐέ.  
Mining is responsible for subtracting land devoted to farming activities and to turn soil 
unproductive and not usable on the long term. In some regions mining activities are 
responsible for the loss of livelihood for local communities, their displacement and affect 
their independency in terms of food production. The indicator will provide information on 
the surface of crop lost over the total extent of the cultivated area. The value obtained will 
be given as a percentage and derived by the ratio of the extent of the mining surface over 

http://www.borealbirds.ca/index.php/avian_data
http://www.iucnredlist.org/
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the total extent of the farmed land. By providing information on the type of crop present in 
the area of interest, is possible to determine the percentage of the loss per crop type.  
The most standard method used for land use - land cover change detection is the post 
classification comparison method, which entails the comparison of independently produced 
classified images 
 
change percentage (%) = (present LULC area – previous LULC area) * 100 /                                           
      previous LULC area  
 
This method could be implemented in the proposed workflow. 
Inputs 

- Agricultural surface. It can either be a single crop variety or multiple crops, which will 
give as output the percentage of lost surface per crop type. An example of data type 
is available for South Africa showing the surface occupied by agricultural area. 
https://figshare.com/articles/Updated_cropland_map_of_South_Africa_for_the_20
13-2015_period_/5322970 ; 

- Mining concessions or mining surface extent 
Algorithm  

- Download input layers 
- Intersect of the input data (e.g., ArcGISTM Analysis tools Ą overlay Ą intersect) 
- Perform zonal statistic between the two areas to obtain the area of the habitat 

intersecting the mine facilities (e.g., ArcGISTM Spatial Analyst tools Ą zonal Ą zonal 
statistics)  

Outputs 

- The surface of cropland lost expressed as a percentage 

 
 

Mineral extraction and areas of interest for the 
protection of mountain ecosystems 
This workflow is conceived to assess the impact of mineral extraction on hotspots areas for 
the preservation of mountain ecosystems biodiversity and integrity. The present workflow is 
targeting the SDG15 aiming to “ensure the conservation of mountain ecosystems, including 
their biodiversity, in order to enhance their capacity to provide benefits that are essential 
for sustainable development”. The indicator proposed is in line with the SDG 15.4.1 
“Coverage by protected areas of important sites for mountain biodiversity” which estimates 
the mean percentage of mountain ecosystems dedicated to protected areas 
(https://unstats.un.org/sdgs/metadata/files/Metadata-15-04-01.pdf).  
Mountain top ecosystems where Mountain Top Removal is practiced are the most exposed 
to a decline in biodiversity. Mountain Top Removal Mining is a form of surface mining at the 
summit of a mountain. The mineral deposit is accessed through consecutive blasts to 
expose underlying deposits. This practice is usually employed for coal mining.  
Inputs 

- Mining concessions/ancillary data on the surface occupied by the mine;  

https://figshare.com/articles/Updated_cropland_map_of_South_Africa_for_the_2013-2015_period_/5322970
https://figshare.com/articles/Updated_cropland_map_of_South_Africa_for_the_2013-2015_period_/5322970
https://unstats.un.org/sdgs/metadata/files/Metadata-15-04-01.pdf
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- Satellite image prior and subsequent mineral exploitation to assess the changes in 
the habitat. An affected area can be identified and an appropriate satellite image can 
be downloaded from the Earth Explorer website (https://earthexplorer.usgs.gov/) ;  

- Ancillary data on the ecosystem to identify the presence of important sites for 
biodiversity conservation. Georeferenced data containing information on key 
biodiversity areas can be found on the World Database on Key Biodiversity Areas and 
could be considered as a data source for this workflow 
(http://www.keybiodiversityareas.org/site/requestgis) 

 
Algorithm  

- Spatial overlap between digital polygons indicating the extent of mountain top 
habitat and the extent of the surface affected by the extractive activities 

Outputs 
- Surface of mountain ecosystem disappeared or compromised by mining activities 
- Measure of the habitat lost in km2; or measure of the degree of fragmentation of the 

habitat following the blasting and the extraction. 
 

Mineral extraction and the hydrography of the landscape 
The present workflow aims to determine the extent of the impacts of mineral extraction on 
the hydrology of the impacted area. The workflow objective is to create an indicator 
suitable for the SDG 6ά9ƴǎǳǊŜ ŀǾŀƛƭŀōƛƭƛǘȅ ŀƴŘ ǎǳǎǘŀƛƴŀōƭŜ ƳŀƴŀƎŜƳŜƴǘ ƻŦ ǿŀǘŜǊ ŀƴŘ 
ǎŀƴƛǘŀǘƛƻƴ ŦƻǊ ŀƭƭέ and in particular for the target 6.4 which aims to “ensure water-use 
efficiency […] and ensure sustainable withdrawals and supply of freshwater […] to reduce 
the number of people suffering from water scarcity”. 
Through the comparison of satellite images of a given area, acquired at different years, it is 
possible to reveal the scale of the impact of mineral extraction on the hydrology of the area 
and to identify alterations such as buried streams, the creation of ponds and other mining 
related surface of water.  
The approach chosen for this indicator is based on satellite images processing, to obtain a 
thematic map categorizing the different objects in the image and distinguish superficial 
water. The comparison between images taken in different years will allow making an 
estimation of decrease or alterations of superficial water patterns since the installation of 
the mine. 
Inputs 

- Landsat images or other satellite images of the area of interest. After examination of 
the interested area, satellite images can be downloaded from the Earth Explorer 
website (https://earthexplorer.usgs.gov/); 

- Ancillary data on the hydrology and topography of the region (hydrological and 
biophysical data). These data can be obtained from literature research, archival 
mining company records for Environmental Impact Assessment (EIA); 

- Data on the nature of the mining site and it extent to validate the image 
classification. 

Algorithm 
- Land use change estimation can be made from multi date satellite images collected 

in different years, preferably choosing those years where intense mining activities 

https://earthexplorer.usgs.gov/
http://www.keybiodiversityareas.org/site/requestgis
https://earthexplorer.usgs.gov/
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are recorded. The creation of a composite image based on infrared bands can help 
to classify the biophysical parameters and mine features.  

- The ancillary data on the extent of the mine help in the classification process to 
accurate select the training fields for the use of the Maximum Likelihood 
Classification.  

- The classification will then help in the estimation of the surface dedicated to each 
category and make comparison between the images of previous years. The 
difference between the classes is made based on different spectral reflectance of the 
objects on the ground. For example, the distinction between natural and man-made 
water bodies can be based on different concentration of suspended particles or 
hydro-chemical properties.  

Outputs  

- The surface occupied by each category in the classified image for each of the 
considered years 

 

Mineral extraction and habitat fragmentation 
The present workflow is conceived as an indicator toward SDG 15 “life on land” and in 
particular the target 15.3.1. “Proportion of land that is degraded over total land area” and 
Aichi Biodiversity Target 5. The parameter considered is habitat fragmentation, intended as 
a landscape level process in which a specific habitat is progressively divided into smaller 
fragments as a result of both natural and human activities.  
The use of the FRAGSTATS software5 can be considered to provide the degree of 
fragmentation of the habitat. FRAGSTATS is a spatial pattern analysis program for 
quantifying the structure of landscapes. The landscape is used defined and can represent 
any spatial phenomenon.  
The degree of fragmentation and so the impact of the mine on the integrity of the habitat 
can be assessed by defining a scale going from “low fragmented” to “highly fragmented”. 
Another metric that can be considered to assess the degree of fragmentation posterior the 
installation of the mine is connectivity. This can be achieved by determining the extent to 
which movements between patches are facilitated or discouraged in relation to the matrix 
and the distance occurring between patches. 
 

Mineral extraction and endemic species: the case of 
metallophyte plants 
The workflow is intended to measure the impact of mineral extraction on the endemic 
species inhabiting the area of concern, in particular metallophyte plants which survival is 
strictly dependent from mineral deposits. The indicator derived from the workflow 
addresses the Aichi Biodiversity Target 12, on the prevention of extinctions and 
improvement and sustainability of species most in decline” and the SDG 15.5.1 “Red list 
index” to reduce the degradation of natural habitats and protect and prevent the extinction 
of threatened species.   

 
5 https://www.umass.edu/landeco/research/fragstats/fragstats.html  

https://www.umass.edu/landeco/research/fragstats/fragstats.html
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Classified as metallophyte are those plant species that can tolerate high levels of heavy 
metals. Such plants range between “obligate metallophytes” which can only survive in the 
presence of the metals they are dependent on, and “facultative metallophytes” which 
survivor is not strictly dependent from the presence of the metal.  
This indicator is calculated from the intersection of spatial data on the distribution of a 
metallophyte plants and data on the surface occupied by the mine. The result obtained 
from the intersection of the two layers will provide a measure of the habitat loss and can be 
used for conservatory purposes to assess the changes in the species abundance when 
mining activities are present.  
Inputs 

- Surface of the area occupied by the mine as surface allocated to mining concessions 
or the surface of individual mines.  

- Surface designated to be the habitat of a given species. IUCN Red list spatial data 
http://www.iucnredlist.org  

Algorithm  
- Intersect of the input data (e.g., ArcGISTM Analysis tools Ą overlay Ą intersect) 
- Perform zonal statistic between the two areas to obtain the area of the habitat 

intersecting the mine facilities (e.g., ArcGISTM Spatial Analyst tools Ą zonal Ą zonal 
statistics)  

Outputs 
Area of the species habitat occupied by the mine and surface of the habitat lost because of 
the presence of the mine in km2. 

http://www.iucnredlist.org/
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