
 

 
, 
 
 
 

 
Deliverable 1.6 

Data fusion guidelines 
 
Creator *Department of Mathematics Tullio Levi-Civita, University of 

Padova. 
** Forschungszentrum Jülich, Institute of Bio- and Geosciences: 
Agrosphere (IBG-3). 
*** Dipartimento di Salute della Donna e del Bambino, University 
of Padova. 
**** Dipartimento di Ingegneria Civile, Edile e Ambientale – ICEA, 
University of Padova. 

 
Creation date 

 
July 28, 2019 

 
Due date 

 
August 30, 2019 

 
Last revision date 

 
August 30, 2019 

 
Status 

 
Final 

 
Type 

 
Report 

 
Description 

 
This deliverable proposes tools for data fusion 

 
Right 

 
Public 

 
Language 

 
English 

 
Citation 
 
 
 
 
Grant agreement 

 
E. Perracchione*, M. Polato*, W. Erb*, F. Piazzon*, F. 
Marchetti***, F. Aiolli*, B. Bayat**, A. Botto****, S. De Marchi*, 
S. Kollet**, C. Montzka**, A. Sperduti*, M. Vianello*, M. Putti*, 
2019.  Data Fusion guidelines.    
 
GEOEssential Deliverable 1.6., ERA-PLANET No 689443  
 



  

2  

Table of Contents 

 

TABLE OF CONTENTS .................................................................................................................... 2 

INTRODUCTION ........................................................................................................................... 2 

FUSING FEATURES VIA KERNELS FOR DEBLURRING ....................................................................... 3 

TESTS FOR DEBLURRING ..................................................................................................................... 5 

DATA FUSION RPOD APPROACH ................................................................................................... 7 

TESTS FOR RPOD DATA FUSION ........................................................................................................... 8 

CONCLUSIONS ............................................................................................................................. 9 

REFERENCES ................................................................................................................................ 9 

 

 

Introduction 
 

The objective of this deliverable is to provide guidelines on methods of “data fusion” that will 
form the framework of Task 1.6 entitled “Data Fusion” (DF). This task is intimately related to 
task 1.4 “Modeling and Processing Services” and uses similar approximation techniques, such 
as kernel approximation, for the specific purpose of data fusion. Both deliverables aim at 
providing value-added services to Essential Variables (EVs).   
 
The report addresses a general state of the art with some specific examples for applications 
in the context of the GeoEssential project.  
 
Information (or data) fusion can be defined as the study of efficient methods for automatically 
or semi-automatically transforming information from different sources and different points 
in time into a representation which provides effective support for human or automated 
decision making (Boström, et al., 2007). In this sense, Reduced Order Methods (ROMs) might 
be of interest; see e.g. (Azaiez, et al., 2016).  
 
In the context of multi-sensors imagery, data fusion can be thought of as a process of 
combining images, obtained by sensors of different wavelengths in order to form a composite 
and more informative image  (Jiang, et al., 2009). In this specific report, we focus on novel 
kernel methods, that fuse more images together. This, as an immediate application, we study 
algorithms for deblurring images.  
 
More specifically, we drive our attention towards two aspects of data fusion-based modelling: 
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 Deblurring images (refer to Section Fusing features via kernels for deblurring): 
combining features from different images to improve the image resolution (De 
Marchi, et al., 2017) (De Marchi, et al., 2019) (Bozzini, et al., 2015).  

 Fusing data via POD (refer to Section Data fusion POD approach): in data-fusion a 
challenging problem is the one of merging different data and approximate them. For 
those multivariate problems  ROMs might be helpful (Azaiez, et al., 2016) (Azaiez, et 
al., 2018). 

Fusing features via kernels for deblurring 

 
Among several methods available in literature, we here focus on kernel-based method and 
specifically, we introduce a novel technique in the context of machine learning. The goal of 
the proposed method is to consider a set of images, then extract different features from 
them, and finally glue them together for improving the resolution of possibly blurred images.  
 
Let us suppose to have a set of images 𝐼𝑘, 𝑘 = 0, … , 𝑚, measuring the same variable at 

different time steps, i.e. sets of function values 𝑓𝑖
𝑘, 𝑖 = 1, … , 𝑛, all sampled at the set of 

𝑛 points 𝑋 = {𝑥𝑖 ∈  ℝ𝑑 , 𝑖 = 1, … , 𝑛}. Since we take images, for this section we suppose 𝑑 =
2 and we can think of 𝑋 as the set of pixels.  Let us further suppose that for simplicity only 
one of these images (without any restrictions 𝐼0) is blurred. We here propose a technique, 
that, given this blurred image, by extracting features from other images 𝐼𝑘, 𝑘 = 1, … , 𝑚, fuses 
those features via kernel matrices and enables us to obtain a deblurred approximation of 𝐼0. 
 
We consider kernels 𝜅: Ω × Ω →  ℝ that can be decomposed via the Mercer's Theorem (see 
e.g. Theorem 2.2., p. 24, in (Fasshauer & McCourt, 2015)) as  
 

𝜅(𝑥, 𝑦) = ∑ 𝜆𝑘𝜌𝑘(𝑥)𝜌𝑘(𝑦),     𝑥, 𝑦 ∈ Ω,

𝑘≥0

 

 
where the series converges uniformly and absolutely and {𝜌𝑘}𝑘≥0  is a countable set of 
eigenfunctions (with the associated eigenvalues {𝜆𝑘}𝑘≥0 ) of the operator 𝑇: 𝐿2(Ω) →
 𝐿2(Ω), given by 
 

𝑇[𝑓](𝑥)  =  ∫ 𝜅(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦
Ω

.  

 
It is worth to note that we can interpret the Mercer series representation in terms of an inner 
product in the so-called  feature space F, which is a Hilbert space. Indeed, 
 

𝜅(𝑥, 𝑦) = 〈Φ(𝑥), Φ(𝑦)〉𝐹,     𝑥, 𝑦 ∈ Ω, 
 
where Φ from Ω to 𝐹 is known as feature map. 
 
Moreover, for the kernels that admit a Mercer expansion (also called valid kernels, following 
the definition given by (Shawe-Taylor & Cristianini, 2004)), the mapping Φ enables us to  
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obtain the canonical features Φ(𝑥) =   𝜅(⋅, 𝑥). We refer the reader to (Fasshauer & McCourt, 
2015) (Shawe-Taylor & Cristianini, 2004) for further details. 
 
We denote by K the kernel matrix constructed via the data set 𝑋, i.e. the matrix of entries  
 

K𝑖𝑗 = 𝜅(𝑥𝑖 , 𝑦𝑗),      𝑖, 𝑗 = 1, … 𝑛. 

 
Since we consider strictly positive definite kernels, such a matrix is positive definite 
(Fasshauer, 2007). 
 
In approximation theory, radial kernels are the most considered, which are kernels for whom 
there exists  a Radial Basis Function (RBF)  𝜑: [0, ∞) →   ℝ and (possibly) a shape parameter 
𝛾 > 0 such that for all 𝑥, 𝑦, ∈ Ω 
 

𝜅(𝑥, 𝑦) = 𝜅𝛾(𝑥, 𝑦) = 𝜑𝛾(||𝑥 − 𝑦||2
2): = 𝜑(𝑟). 

 
We now suppose that we are able to extract 𝑝 features from 𝑚 images, such as edges. Then, 
formally it means that we suppose to know a function  𝜓: ℝ𝑛 → ℝ𝑝, so that the fused kernel 
becomes 
 

𝜅Ψ(𝑥, 𝑦) = 𝑘((𝑥, Ψ(𝑥)), (𝑦, Ψ(𝑦))), 
 
where 𝜅  is a strictly positive definite kernel on ℝ𝑛+𝑝. This coincides with the so-called 
Variably Scaled Kernels (VSKs), which have been recently studied. 
 
To explain how this method can be used in this framework, let us suppose to have an original 
blurred image 𝐼0 and related function values 𝑓0. For deblurring and fuse data we can 
construct an approximation of the form  
 

𝐼0 =  ∑ 𝛼𝑖𝜅Ψ(𝑥, 𝑥𝑖),

𝑛

𝑖=1

 

 
which, after imposing the interpolation conditions, leads to solving the system:  
 

KΨ𝛼 = 𝑓0, 
 
where 𝛼 = (𝛼1, … , 𝛼𝑛)𝑇, 𝑓0 = (𝑓1

0, … , 𝑓𝑛
0)𝑇 and  

 

K𝑖𝑗
Ψ = 𝜅Ψ(𝑥𝑖 , 𝑦𝑗),      𝑖, 𝑗 = 1, … 𝑛. 

 
We now focus on an application of such method in the context of the GeoEssential project.  
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Tests for deblurring    
 
In the numerical experiments that follow, we consider two test images measuring the soil 
moisture over Europe. Soil moisture is a key variable for hydrology which turns out to be 
meaningful for many applications, such as modeling climate variability and water resources.  
 
The first images we consider consist of raw data taken by NASA Soil Moisture Active Passive 
(SMAP) satellite on April 2015 (Entekhabi at al., 2014). Such satellite has been launched on 
January 31, 2015, and the mission is designed to principally measure soil moisture over the 
Earth. 
 
The second test images we take consist of simulated soil moisture data obtained via the 
TERRestrial SYStem Modelling Platform (TerrSysMP) that was developed to simulate the 
interaction between lateral flow processes in river basins with the lower atmospheric 
boundary layer (Kollet & Maxwell, 2008) (Shrestha, et al., 2014). The Centre for High-
Performance Scientific Computing in terrestrial systems (HPSC TerrSys) is operating 
TerrSysMP in a forecasting setup over North Rhine-Westphalia and Europe. The model results 
are made available for the scientific community daily as videos via the YouTube Channel of 
HPSC TerrSys https://www.youtube.com/channel/UCGio3ckQwasR5a_kJo1GdOw.   
 
We now provide an example. Let us suppose to have a blurred image plotted in Figure 1,  (top, 
left). This image has been reconstructed with the polynomial least squares, as explained in 
(Perracchione, et al., 2019). The image from which we are able to extract features is plotted 
in the top right frame. In this case, as augmented features, we extract the edges (see bottom 

left). Then, such features, are used to construct the augmented kernel matrix Kψ. And finally, 
by solving the interpolation system, we get the deblurred image plotted in the bottom right 
frame. In this specific case we took as reference solution the image plotted in the top right 
frame, so that we can compute the Root Mean Square Error (RMSE) as a post-processing 
technique. For the blurred image we have RMSE=1.48E − 02, while for the deblurred one we 
obtain RMSE=8.33E − 03. 
 
As a second test case, in the same framework, we consider the examples plotted in Figure 2.  
For the blurred image we have RMSE=7.12𝐸 − 03, while for the deblurred one we obtain 
RMSE=3.74𝐸 − 03. In both cases, we can affirm that the proposed method, simple from the 
computational point of view, turns out to be robust.  
 
In what follows, we focus on ROMs and their applications in the context of data fusion.  
 



  

6  

 
Figure 1: Top: the blurred image (left) and the original image (right). Bottom: the extracted edges (left), 

i.e. the augmented features, and the deblurred image (right).   

 

 

 
Figure 2: Top: the blurred image (left) and the original image (right). Bottom: the extracted edges (left), 

i.e. the augmented features, and the deblurred image (right).   
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Data fusion RPOD approach 
 
The main problem in data-fusion is the one of merging different data and approximate them. 
Multivariate problems are thus often encountered and in this context ROMs might be of 
interest. Such methods, in the discrete case, allow to decompose tensors. As a consequence, 
in approximating tensorial functions, we always reduce to univariate interpolation.  
 
To introduce the Recursive POD (RPOD) for multivariate functions, we take a function 𝑓 in the 
Lebesgue space 𝐿2(𝑋1 × 𝑋2 × ⋯ × 𝑋𝑑), where 𝑋1, … , 𝑋𝑑 ⊂ ℝ are bounded domains. Then, 
we know that 𝑓 admits the following expansion (Azaiez, et al., 2016) (Azaiez, et al., 2018) 
 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑑) = ∑ 𝜎𝑖1
𝑣𝑖1

(𝑥2, … , 𝑥𝑑)

𝑖1∈𝑁 

𝜑𝑖1(𝑥1), 

 
where the sum is convergent in 𝐿2(𝑋2 × ⋯ × 𝑋𝑑, 𝐿2(𝑋1)),  and where  {𝜑𝑖1}𝑖1∈𝑁 and 

{𝑣𝑖1}𝑖1∈𝑁, are two orthonormal sets respectively complete in 𝐿2(𝑋1)   and 𝐿2(𝑋2 × ⋯ × 𝑋𝑑). 

 
Continuing in applying recursively the POD, we construct the expansion of  
 

𝑣𝑖1, 𝑣𝑖2
(𝑖1)

, 𝑣𝑖𝑑−2

(𝑖1𝑖2,…,𝑖𝑑−3)
, 

 
and we have that the function 𝑓 ∈ 𝐿2(𝑋1 ×  𝑋2 × ⋯ ×  𝑋𝑑),  can be written as; refer to  
Lemma 2.1 in (Azaiez, et al., 2018) 
 

𝑓 =  ∑ ∑ ⋯ ∑ σi1

𝑖𝑑−1∈𝑁𝑖2∈𝑁𝑖1∈𝑁

𝜎𝑖2

(𝑖1)
𝜎𝑖𝑑−1

(𝑖1𝑖2,…,𝑖𝑑−2)
𝜑𝑖1

⊗ 𝜑𝑖2

(𝑖1)
⊗ ⋯ ⊗ 𝜑𝑖𝑑−1

(𝑖1𝑖2,…,𝑖𝑑−2)
⊗ 𝑣𝑖𝑑−1

(𝑖1𝑖2,…,𝑖𝑑−2)
 

= ∑ 𝜎𝑖1
∑ 𝜎𝑖2

(𝑖1)
⋯ ∑ 𝜎𝑖𝑑−1

(𝑖1𝑖2,…,𝑖𝑑−2)

𝑖𝑑−1∈𝑁𝑖2∈𝑁𝑖1∈𝑁

𝜑𝑖1
⊗ 𝜑𝑖2

(𝑖1)
⊗ ⋯ ⊗  𝜑𝑖𝑑−1

(𝑖1𝑖2,…,𝑖𝑑−2)
⊗ 𝑣𝑖𝑑−1

(𝑖1𝑖2,…,𝑖𝑑−2)
. 

 
 
Note that, computationally speaking this can be seen as a SVD in higher dimensions. 
Therefore, once the tensor is decomposed, we can interpolate via standard kernel-based 
methods each eigenfunction. This leads to univariate interpolation and hence the stability of 
standard interpolation is improved. We refer to this method as K-POD and we compare it with 
the standard kernel based method (K-ST) which work in any dimension but might suffer from 
instability especially in higher dimensions. With the K-RPOD we take advantage of 
interpolating univariate functions. 
 
We now provide an example that is meaningful in the context of the GeoEssential project.  
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Tests for RPOD data fusion    
 
As an application, we consider the problem of scoring the quality of air. In this sense knowing 
the values of PM10 and its relations with other air pollutants and chemical factor is if interest. 
The data we take as test are available at http://www.blackwellpublishing.com/rss.  
Those data are collected from 1994 to 1998 in the months November-February and measures 
the air pollution over Leeds (U.K.). This is indeed, a typical example of multivariate data 
analysis. However, due to the high number of input parameters the problem becomes 
challenging and we here apply our tensor decomposition tool. The 34 toy tensor, used in our 
simulations, is constructed with the state of the art by (De Marchi, et al., 2019).       
 
The data set consists of 532 samples and 4 inputs. We briefly discuss below the inputs and we 
refer to (Heffernan & Tawn, 2004) for further details. 

 O3. Daily maximum ozone in parts per billion. 

 NO2. Daily maximum nitrogen dioxide in parts per billion. 

 NO. Daily maximum nitrogen monoxide in parts per billion. 

 SO2. Daily maximum sulfur dioxide in parts per billion. 

The output variable is the value of PM10. Thus, to predict it we need to approximate a function 
𝑓 that depends on the above parameters, i.e.  
 

PM10 = 𝑓(O3, NO2, NO, SO2). 
 
About the 10%  of the data set, specifically, 𝑠 = 53 instances, is used for testing the method.   
We compare ST-K interpolation with K-RPOD approximation. In Table 1 we report  the Relative 
Maximum Absolute Error (RMAE) and the Relative Root Mean Squares Error (RRMSE) for both 
methods. The K-RPOD takes advantage of decomposing the problem and turns out to be more 
accurate than a srandard multivariate interpolation.  

 

Method K-ST K-RPOD 

RMAE 7.14E+01 1.88E+00 

RRMSE 9.23E+00 3.70E-01 

 
Table 1: The results for approximating 𝑃𝑀10. 

To summarize, such a scheme enables us to fuse data of different types, without knowing 
which is the underlying function. 
 
 
 
 
 

http://www.blackwellpublishing.com/rss
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Conclusions 
 
In this deliverable, Task 1.6 “Data Fusion” (DF), we gave the main guidelines for information 
fusion issues. Two novel methods have been briefly reviewed presenting which are pro and 
cons.  Then, we focused on specific experiments related to EVs.  
Furthermore, these problems are strictly related to the ones presented in Task 1.4 “Modeling 
and Processing Services”. Indeed, because of the large amount of available data, instability 
issues might occur and therefore algorithms such as ROMs should be applied to obtain more 
robust solutions. As work in progress, we have to fuse the soil moisture data with Earth rain 
observations in order to get more reliable predictions.  
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