

UNIVERSITÀ DELL'ACALABRIA

ТКД

Deliverable 2.2 Unified list of EVs that reflects the cross-disciplinarity of the EV concept

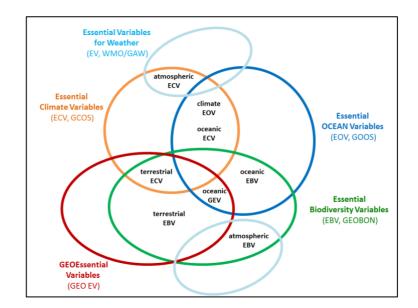
Creator	Jan Bumberger, Angela Lausch, Hannes Mollenhauer, Reed Anderson and Steffen Zacharias (Helmholtz Centre for Environmental Research – UFZ, Germany)
Creation date	Dec. 13. 2018
Due date	Sept. 30. 2018
Last revision date	Dec. 13. 2018
Status	Final
Туре	Report
Description	This report is a description of the lists of defined Essential Variables (EVs)
Right	Public
Language	English
Citation	Bumberger et al. (2018) Unified list of EVs that reflects the cross-disciplinary of the EV concept. Technical Report, ERA-PLANET No 689443.
Grant agreement	ERA-PLANET No 689443

Table of Content

TABLE OF CONTENT
LIST OF FIGURES
INTRODUCTION4
CONCEPTUAL APPROACH TO STANDARDIZING EVS5
CURRENT STATUS OF ESSENTIAL BIODIVERSITY VARIABLES (EBV)
CURRENT STATUS OF ESSENTIAL CLIMATE VARIABLES (ECV)
CURRENT STATUS OF ESSENTIAL OCEAN VARIABLES (EOV)
CURRENT STATUS OF OTHER SETS OF ESSENTIAL VARIABLES
CONCLUSION9
REFERENCES
APPENDIX: CURRENT SINGLE EV LISTS14
ESSENTIAL BIODIVERSITY VARIABLES (EBV)
ESSENTIAL CLIMATE VARIABLES (ECV)
ESSENTIAL OCEAN VARIABLES (EOV)

List of figures

Introduction

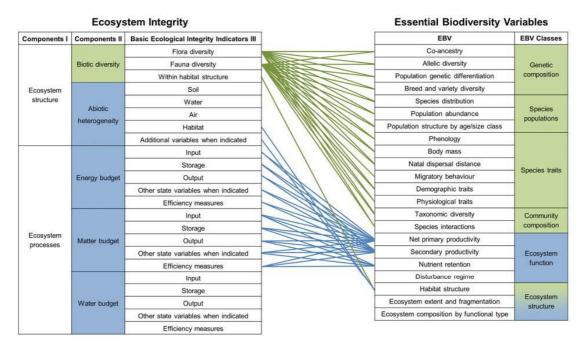

Within the last decade, some efforts have been made to establish approaches to conceptually better combine the diversity of research activities in the Earth system sciences and communities. An important step forward is the establishment of the concept of essential variables for the description and monitoring of energy and material flows and system properties. Essential Variables (EVs) are "a minimal set of variables that determine the system's state and developments, are crucial for predicting system developments, and allow us to define metrics that measure the trajectory of the system" (D2.2 ConnectinGEO 2016). The provision of consistent EV schemes supports the creation of analysis, models, and in-situ measurement and remote sensing techniques at different spatial and temporal scales. Mostly, the development of sets of EVs like the EBVs (Pereira et al. 2013, Kissling et al. 2018) is an ongoing experts and community process leading to an agreement on the essentiality of variables reflecting the community-specific description of the system. This community-specific approach poses significant challenges to the consistency of the EVs if different EV concepts are to be compared with each other.

Essential variables are merged into EV because they are defining a minimum set of essential measurements to capture major dimension of the status, their processes and changes of the bio-climate or geodiversity. From the point of view of physics it can be stated that the previous definitions of the EVs did not use consistent formula symbols and units. This poses difficulties for the enormous potential for merging the variables into a core set and additional domain-specific variables. One way of harmonizing the EVs would be to use the physical effects and relationships of the respective variables as an ordering principle. However, this would require that the existing EVs be consistently defined across the physical entities and relationships using a higher-level physical-mathematical as well as mechanistic concept. The present report is intended to take an inductive step in this direction to show different concepts for the standardization of existing EVs lists in order to reflect the cross-disciplinarily of the EV concept. The conceptual representation in Figure 1 with a Venn diagram representing the conceptual overlaps of different sets of EV approaches as a first step in this direction (Lindstrom et al. 2012, Lausch et al., 2018). However, in order to

4

enable a semantic link to different target systems, in Chapter 2 (Conceptual approach to standardizing the EV lists) possibilities are presented and considered in the creation of the current EV lists (Chapter 3). The use of this information and the mapping are then carried out in WP3, Task3.2 (Definition of cross-domain EVs for services and modelling).

Figure 1: Conceptual overlap of all projects for defining Essential Variables; Essential Variables for Weather - EV, (led by WMO/GAW-World Meteorological Organization/Global Atmosphere Watch, Essential Ocean Variables – EOV (led by the GOOS-Global Ocean Observing System), Essential Climate Variables – ECV (led by GCOS-Global Climate Observing System), Essential Biodiversity Variables – EBV (led by GEO BON) and the GeoEssential Variables- GEO EV (led by the actual project http://www.geoessential.net/) (Figure from Lausch et al. 2018, modified after Lindstrom et al. 2012).


Conceptual approach to standardizing EVs

Based on the previous project ConnectinGEO (EU Framework Program for Research and Innovation, SC5-18a-2014 - H2020) and the summaries of the existing EVs developed there, all relevant developments were examined by means of a comprehensive literature search. In particular, the focus was on the identification of coherent properties and overlaps, which can later be combined and harmonized by means of a meta-analysis. The underlying **Hypothesis 1** is that a variety of variables recur in all existing definitions. **Hypothesis 2** states that the essential relationships between the variables or groups of variables can be identified only by consistently recording the underlying physical entities and relationships. **Hypothesis 3** is that the variables can be mapped to different target systems (see Figure 2).

The current status is that the variables have been collected in lists and enriched with further properties of a relational model. First, two conceptual approaches for the enrichment were chosen:

- i. The metadata enrichment of the individual variables with their physical units and dimensions. As a result, intensity, quantity and parametric variables can be distinguished later. In addition, this approach makes it possible to identify and analyze energy or material fluxes between the domains or state variables of the domains.
- ii. Enrichment of the variables with metadata in order to be able to exemplary mapping the ecosystem integrity concept. This was chosen because it is currently discussed and implemented in integrated environmental long-term observatories (Mirtl et al. 2018, Mollenhauer et al. 2018). The consideration here would be a process or structure level (component 1) and can be mapped as budgets as well as biotic and abiotic diversity characteristics in another hierarchy level (component 2).

Figure 2: Ecosystem integrity (EI) and essential biodiversity variables (EBV) frameworks. Lines indicate examples of linkages, differences in resolution and complementarity of EI and EBV frameworks (green color refers to biotic and blue color to abiotic indicators or variables, respectively). Green lines indicate that three biotic EI indicators are relevant for 16 EBVs. Blue lines indicate that four biotic EBVs are relevant for 12 abiotic EI indicators. (Figure from Haase et al. 2018)

The purpose of this deliverable is to compile the up-to-date lists of essential variables. These are enriched with metadata to perform the analysis and standardization in WP3 (Task3.2). In the data model, it is possible at any time to make further enrichments, which seems particularly interesting for investigations on different spatial and temporal scales.

Current Status of Essential Biodiversity Variables (EBV)

The GEO BON (Biodiversity Observation Networks (BON) is a part of GEO. The Group on Earth Observations) Initiative is coordinating the EV definition process for the biodiversity at the global scale, was started in 2012 and is embedded in the Convention on Biological Diversity (CBD) process during the last decades. In this discus, the Aichi goals were defined (1993) and are currently adjacent to the SDGs. It can be assumed that a merger will take place here. The Biodiversity Monitoring Program (Arctic BON) and the Asia Pacific BON (AP-BON) are existing regional BONs under the GEO BON general initiative. China, Colombia and France are national BONs already functioning. The first definition of EBVs was presented in 2013 (Pereira et al. 2013) and essentially covers the state that exists today and has been further developed within the community process (Geijzendorffer et al. 2016). A decisive process is a profound discussion of the EBV classes defined in the first instance. For example, the "Species Traits" were discussed and restructured by (Kissling et al., 2018). In a further process, where EBV were linked to RS, Aichi targets and SDG targets, three workshops held during 2015-2017. In the last workshop, over 40 international experts, identified nearly 120 remote sensing variables and concatenated them. The publication for that is in progress. Unlike ECV and EOV, EBVs are much more ecosystemic and biological and are primarily targeted at terrestrial systems. The embedding of abiotic factors and conditions are unfortunately not included at the moment. Another major change has evolved over the last two years as new definitions have been proposed for EBVs in the field of species distribution and abundance (Kissling et al. 2018, Schmeller et al. 2018). It can be assumed that a holistically accepted definition of EBVs will be completed in the next few years (Walters and Scholes, 2017). For the cross-cutting work in the field of biologicalecological EVs shows that standardization or at least the link between the EOVs (see also section Current Status of Essential Ocean Variables) and the EBVs is to be established

(Muller-Karger et al. 2018). For example, marine EBVs are to be based on primary speciesbased data at a level that can be used to estimate biodiversity indices.

Current Status of Essential Climate Variables (ECV)

The Essential Climate Variables (ECVs) are internationally well recognized since more than one decade and many of them are essential also in other areas. A recent definition describes the variables as "a physical, chemical, or biological variable or a group of linked variables that critically contributes to the characterization of Earth's climate" (Bojinski et al., 2014). This definition is widely accepted by the scientific community and endorsed by the United Nation Convention on Climate Change (UNFCCC) as well as other international bodies. The ECVs are identified in three domains: atmosphere (responsible are the Global Climate Observing System by the World Meteorological Organization (GCOS-WMO)), ocean (responsible are the Global Ocean Observing System (GOOS)) and land (responsible are the Food and Agriculture Organization (FAO)). This shows that a number of variables were initially defined as climate-relevant and the bottom-up process for the introduction of further variable classes led to diversification in the individual areas. Included in the system of ECVs are a variety of infrastructures and programs being used operationally to make predictions regarding the Earth's climate and will be further developed (WMO 2015).

Current Status of Essential Ocean Variables (EOV)

The Global Ocean Observing System (GOOS) is a programme executed by the Intergovernmental Oceanographic Commission (IOC) of the UNESCO and is coordinating the EV definition process for the oceans at the global scale. The first approach is pursued by the "Framework for Ocean Observing" with the aim of "advancing global sustainable ocean observations in the next decade" (Lindstrom et al., 2012). The framework is designed for observation of ocean observations with a focus on Essential Ocean Variables (EOV) to ensure that the assessments are cross-platform to provide an optimal global view for each EOV. There are three relevant panels for the development of the EOVs: the Physics and Climate Expert Panel (provided by the Ocean Observations Panel for Climate (OOPC)), the Biogeochemistry Expert Panel (provided by the International Ocean Carbon Coordination Project (IOCCP)) and the GOOS Biology and Ecosystems Panel. The development of the EOVc

8

begins with the spatially explicit description of ecosystems and predicts how these systems are affected by anthropogenic pressures and has been demonstrated as an example in Australia (Hayes et al. 2015). From a scientific-methodological point of view, the developed EOVs are very consistent, as they consistently evaluate all existing and future observatories on different scales. This led to the current description of the EOVs, which, with a few exceptions, are defined consistently and are continuously updated (Miloslavich et al. 2018). As described in the status of essential biodiversity variables, there is currently a process of integrating species-based maritime and terrestrial EVs, which is a step in the right direction towards standardization (Muller-Karger et al., 2018).

Current Status of other sets of Essential Variables

In addition to the featured EVs, there are a number of other activities that have worked on and / or are still working on the development of EVs in specific areas. However, according to the authors, a number of these can be standardized among the already presented EVs. For example, the Agriculture and Nutrition Initiatives (GEOGLAM and others) are using target variables to address food security (Stok et al. 2016). Another topic is the development of essential variables or indicators in the field of health, where the process is very confusing and mostly related to the treatment of certain diseases (Blas et al. 2016). Beyond the mentioned domains, researchers have recently begun to identify critical social determinants of development and refined these determinants based on their feasibility, reliability, validity, and usefulness to policymakers. Furthermore, these system's approaches composite indices with social and economic dimensions for tracking progress to development targets (Reyers et al. 2017).

Conclusion

In summary, it can be stated that initiatives in the individual communities have become increasingly common in recent years for the establishment of essential variable sets. There are advanced concepts in climate science (ECVs), ocean science (OCVs) and in biodiversity research (EBVs). The process of final definition and establishment of EBV will not be completed until 2022. Other ideas in other communities (e.g. social sciences) exist

conceptually but are not in a particularly advanced state. Further progress can be expected in all communities over the next few years with the further development and provision of consistent practices and standards, particularly in the context of digitization. In order to advance data-driven science concepts on different spatial and temporal scales, generic definitions of relevant processes and the underlying variables (essential variables) are required in all sciences. This procedure brings in particular the earth system sciences into unprecedented possibilities for the integration of most different data sources by means of semi-automatic and / or automated procedures. Key steps in this direction are (i) the unified definition of the existing essential sets of variables, and (ii) the identification of crossdomain essential variables to allow links between the domains and allow ranking of all variables.

References

Blas, E., Ataguba, J.E., Huda, T.M., Bao, G.K., Rasella, D., Gerecke, M.R., Williams, J.S. (2016) The feasibility of measuring and monitoring social determinants of health and the relevance for policy and programme – a qualitative assessment of four countries. Glob. Health Action 2016, Vol. 9, 29002.

Bojinski, S., Verstraete, M., Peterson, T.C., Richter, C., Simmons, A. and Zemp, M. (2014) The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy. Bull. Amer. Meteor. Soc., Vol. 95, pp. 1431–1443.

D2.2 ConnectinGEO 2016 – Report Deliverable D2.2: EVs current status in different communities and way to move forward, ConnectinGEO, Ref. Ares (2016) 85023 - 07/01/2016

Geijzendorffer, I. R., Regan, E. C., Pereira, H. M., Brotons, L., Brummitt, N., Gavish, Y., Haase, P., Martin, C. S., Mihoub, J., Secades, C., Schmeller, D. S., Stoll, S., Wetzel, F. T. and Walters, M. (2016) Bridging the gap between biodiversity data and policy reporting needs: An Essential Biodiversity Variables perspective. J Appl Ecol, Vol. 53, pp 1341-1350.

Haase, P., Tonkin J. D., Stoll S., Burkhard, B., Frenzel, M., Geijzendorffer, I. R., Häuser, C., Klotz, S., Kühn, I., McDowell, W. H., Mirtl, M., Müller, F., Musche, M., Penner, J., Zacharias, S., Schmeller, D. S. (2018) The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Science of The Total Environment, Vol. 613–614, pp 1376-1384.

Hayes, K. R., Dambacher, J. M., Hosack, G. R., Bax, N. J., Dunstan, P. K., Fulton, E. A., Thompson, P. A., Hartog, J. R., Hobday, A. J., Bradford, R., Foster, S. D., Hedge, P., Smith, D. C. and Marshall, C. J. (2015) Identifying indicators and essential variables for marine ecosystems. Ecological Indicators, Vol. 57, pp 409-419.

Kissling, W. D., Ahumada, J. A., Bowser, A., Fernandez, M., Fernández, N., García, E. A., Guralnick, R. P., Isaac, N. J., Kelling, S., Los, W., McRae, L., Mihoub, J., Obst, M., Santamaria, M., Skidmore, A. K., Williams, K. J., Agosti, D., Amariles, D., Arvanitidis, C., Bastin, L., De Leo, F., Egloff, W., Elith, J., Hobern, D., Martin, D., Pereira, H. M., Pesole, G., Peterseil, J., Saarenmaa, H., Schigel, D., Schmeller, D. S., Segata, N., Turak, E., Uhlir, P. F., Wee, B. and Hardisty, A. R. (2018) Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol Rev, Vol. 93, pp 600-625.

Kissling, W. D., Walls, R., Bowser, A., Jones, M. O., Kattge, J., Agosti, D., Amengual, J., Basset, A., van Bodegom, P. M., Cornelissen, J. H. C., Denny, E.G., Deudero, S., Egloff, W., Elmendorf, S. C., Alonso García, E., Jones, K. D., Jones, O. R., Lavorel, S., Lear, D., Navarro, L. M., Pawar, S., Pirzl, R., Rüger, N., Sal, S., Salguero-Gómez, R., Schigel, D., Schulz, K.-S., Skidmore, A., Guralnick, R. P. (2018) Towards global data products of Essential Biodiversity Variables (EBVs) on species traits. Nat. Ecol. Evol., Vol. 2, pp 1531–1540.

Lausch, A., Borg, E., Bumberger, J., Dietrich, P., Heurich, M., Huth, A., Jung, A., Klenke, R., Knapp, S., Mollenhauer, H., Paasche, H., Paulheim, H., Pause, M., Schweitzer, C., Schmulius, C., Settele, J., Skidmore, A.K., Wegmann, M., Zacharias, S., Kirsten, T., Schaepman, M.E. (2018) Understanding Forest Health with Remote Sensing, Part III: Requirements for a Scalable Multi-Source Forest Health Monitoring Network Based on Data Science Approaches. Remote Sensing, 10, 1120.

Lindstrom, E., Gunn, J., Fischer, A., McCurdy, A., Glover, L. K. (2012) A Framework for Ocean Observing. By the Task Team for an Integrated Framework for Sustained Ocean Observing, UNESCO 2012 (revised in 2017), IOC/INF-1284 rev.2.

Miloslavich, P., Bax, N. J., Simmons, S. E., Klein, E., Appeltans, W., Aburto-Oropeza, O., Garcia, M. A., Batten, S. D., Benedetti-Cecchi, L., Checkley Jr., D. M., Chiba, S., Duffy, S. E., Dunn, D. C., Fischer, A., Gunn, J., Kudela, R., Marsac, F., Muller-Karger, F. E., Obura, D., Shin, Y.-J. (2018) Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob Change Biol., Vol. 24, pp 2416–2433.

Mirtl, M., Borer, E. T., Djukic, I., Forsius, M., Haubold, H., Hugo, W., Jourdan, J., Lindenmayer, D., McDowell, W.H., Muraoka, H., Orenstein, D. E., Pauw, J. C., Peterseil, J., Shibata, H., Wohner, C., Yu, X. and Haase, P. (2018) Genesis, goals and achievements of Long-Term Ecological Research at the global scale: A critical review of ILTER and future directions. Science of The Total Environment, Vol.626, pp 1439-1462.

Mollenhauer, H., Kasner, M., Haase, P., Peterseil, J., Wohner, C., Frenzel, M., Mirtl, M., Schima, R., Bumberger, J., Zacharias, S. (2018) Long-term environmental monitoring infrastructures in Europe: observations, measurements, scales, and socio-ecological representativeness. Science of The Total Environment, Vol.624, pp 968-978.

Muller-Karger, F. E., Miloslavich, P., Bax, N., Simmons, S. E., Costello, M. J., Pinto, I. S., Canonico, G., Turner, W., Gill, M. J., Montes, E., Best, B. D., Pearlman, J., Halpin, P. N., Dunn, D., Benson, A. L., Martin, C. S., Weatherdon, L., Appeltans, W., Provoost, P., Klein, E., Kelble, C. E., Miller, R. J., Chavez, F. P., Iken, K., Chiba, S., Obura, D., Navarro, L. M., Pereira, H. M., Allain, V., Batten, S., Benedetti-Checchi, L., Duffy, J. E., Kudela, R. M., Rebelo, L.-M., Shin, Y., and Geller, G. (2018) Advancing marine biological observations and data requirements of the complementary Essential Ocean Variables (EOVs) and Essential Biodiversity Variables (EBVs) Frameworks. Front. Mar. Sci., Vol. 5, p 211

Pereira, H. M., Ferrier, S., Walters, M., Geller, G. N., Jongman, R. H. G., Scholes, R. J., Bruford, M. W., Brummitt, N., Butchart, S. H. M., Cardoso, A. C., Coops, N. C., Dulloo, E., Faith, D. P., Freyhof, J., Gregory, R. D., Heip, C., Höft, R., Hurtt, G., Jetz, W., Karp, D. S., McGeoch, M. A., Obura, D., Onoda, Y., Pettorelli, N., Reyers, B., Sayre, R., Scharlemann, J. P. W., Stuart, S. N., Turak, E., Walpole, M., Wegmann, M. (2013) Essential Biodiversity Variables. Science 18, Vol. 339, Issue 6117, pp 277-278.

Reyers, B., Stafford-Smith, M., Erb, K.-H., Scholes, R. J. and Selomane, O. (2017) Essential Variables help to focus Sustainable Development Goals monitoring. Current Opinion in Environmental Sustainability, Vol.26–27, pp 97-105.

Schmeller, D. S., Weatherdon, L. V., Loyau, A., Bondeau, A., Brotons, L., Brummitt, N., Geijzendorffer, I. R., Haase, P., Kuemmerlen, M., Martin, C. S., Mihoub, J., Rocchini, D., Saarenmaa, H., Stoll, S. and Regan, E. C. (2018) A suite of essential biodiversity variables for detecting critical biodiversity change. Biol Rev, Vol 93, pp 55-71.

Status of the Global Observing System for Climate (2015) Report GCOS-195, World Meteorological Organization (WMO).

Stok, F.M., Hoffmann, S., Volkert, D., Boeing, H., Ensenauer, R., Stelmach-Mardas, M., Kiesswetter, E., Weber, A., Rohm, H., Lien, H., Brug, J., Holdsworth, M. and Renner, B. (2016) The DONE framework: creation, evaluation, and updating of an interdisciplinary, dynamic framework 2.0 of determinants of nutrition and eating. PLoS One 2016, Issue 12, Vol. 2, e0171077.

Walters, M., and Scholes, R. J. (2017) The GEO Handbook on Biodiversity Observation Networks. Springer.

Appendix: Current Single EV lists

Essential Biodiversity Variables (EBV)

EBV Domain	EV	EV Subvariables	Unit (SI)	EV El Component	Scientific domain
BV	Genetic composition	Co-ancestry	-	Biotic diversity	Biology
		Allelic diversity	-	Biotic diversity	Biology
		Population genetic differentiation	-	Biotic diversity	Biology
		Breed and variety diversity	-	Biotic diversity	Biology
BV	Species populations	Species distribution	-	Biotic diversity	Biology
		Population abundance	-	Biotic diversity	Biology
		Population structure by age/size class	-	Biotic diversity	Biology
BV	Species traits	Phenology	-	Biotic diversity	Biology
		Body mass	-	Biotic diversity	Biology
		Natal dispersion distance	-	Biotic diversity	Biology
		Migratory behavior	-	Biotic diversity	Biology
		Demographic traits	-	Biotic diversity	Biology
		Physiological traits	-	Biotic diversity	Biology
BV	Community composition	Taxonomic diversity	-	Biotic diversity	Biology
		Species interactions	-	Biotic diversity	Biology
BV	Ecosystem function	Net primary productivity	kg s^-1	Energy budget, Matter budget	Biology
		Secondary productivity	kg s^-1	Energy budget, Matter budget	Biology
		Nutrient retention	kg m^3	Energy budget, Matter budget	Biology
		Disturbance regime	-	Biotic diversity	Biology
BV	Ecosystem structure	Habitat structure	-	Biotic diversity	Biology
		Ecosystem extent and fragmentation	-	Biotic diversity	Biology
		Ecosystem composition by functional type		Biotic diversity	Biology

Essential Climate Variables (ECV)

EV Domain	EV	EV Subvariables	Unit (SI)	EV EI Component	Scientific domain
ECV_Atmosphere	Precipitation		m	abitotic	Physics
ECV_Atmosphere	Pressure		N/m²	heterogeneity abitotic	Physics
ECV_Atmosphere	Surface Radiation Budget	Surface ERB longwave	W/m²	heterogeneity energy budget	Physics
ECV_Atmosphere	Surface Radiation Budget	Surface ERB shortwave	W/m²	abitotic	Physics
ECV_Atmosphere	Surface Wind	surface wind speed	m/s²	heterogeneity abitotic	Physics
ECV Atmosphere	Surface Wind	surface wind direction	rad	heterogeneity abitotic	Physics
ECV_Atmosphere	Temperature (surface)	temperature (surface)	к	heterogeneity	
		,		abitotic heterogeneity	Physics
ECV_Atmosphere	Temperature (surface)	Daily maximum and minimum temperature	к	abitotic heterogeneity	Physics
ECV_Atmosphere	Water Vapour (surface)		%	abitotic heterogeneity	Physics
ECV_Atmosphere	Earth Radiation Budget	Top-of-atmosphere ERB longwave	W/m²	energy budget	Physics
ECV_Atmosphere	Earth Radiation Budget	Top-of-atmosphere ERB shortwave (reflected)	W/m²	energy budget	Physics
ECV_Atmosphere	Earth Radiation Budget	Total solar irradiance	W/m²	energy budget	Physics
ECV_Atmosphere	Earth Radiation Budget	Solar spectral irradiance	W/(m²*m)	energy budget	Physics
ECV_Atmosphere	Lightning			energy budget	Physics
ECV_Atmosphere	Temperature (upper-air)	Tropospheric Temperature profile	к	energy budget	Physics
ECV_Atmosphere	Temperature (upper-air)	Stratospheric Temperature profile	к	energy budget	Physics
ECV_Atmosphere	Temperature (upper-air)	Temperature of deep atmospheric layers	к	energy budget	Physics
ECV_Atmosphere	Water Vapour (upper air)	Total column-water vapour	mol/mol	energy budget	Physics
ECV_Atmosphere	Water Vapour (upper air)	Tropospheric profiles of water vapour	mol/mol	energy budget	Physics
ECV_Atmosphere	Water Vapour (upper air)	Lower-stratospheric profiles of water vapour	mol/mol	energy budget	Physics
ECV_Atmosphere	Water Vapour (upper air)	Upper tropospheric humidity	mol/mol	energy budget	Physics
ECV_Atmosphere	Wind (upper-air)	wind speed (upper-air)	m/s²	energy budget	Physics
ECV_Atmosphere	Wind (upper-air)	wind direction (upper-air)	rad	energy budget	Physics
ECV_Atmosphere	Aerosols properties	Aerosol optical depth	scalar	energy budget	Physics
ECV_Atmosphere	Aerosols properties	Single-scattering albedo	scalar	energy budget	Physics
ECV_Atmosphere	Aerosols properties	Aerosol-layer height	m	energy budget	Physics
ECV_Atmosphere	Aerosols properties	Aerosol-extinction coeff. Profile near tropopause	scalar	energy budget	Physics
ECV_Atmosphere	Aerosols properties	Aerosol-extinction coeff. Profile mid stratosphere	scalar	energy budget	Physics
ECV_Atmosphere	Carbon Dioxide, Methane and other	Tropospheric CO2 column		energy budget	Chemistry
ECV_Atmosphere	Greenhouse gases Carbon Dioxide, Methane and other	Tropospheric CO2	mol/mol	energy budget	Chemistry
ECV_Atmosphere	Greenhouse gases Carbon Dioxide, Methane and other	Tropospheric CH4 column		energy budget	Chemistry
ECV_Atmosphere	Greenhouse gases Carbon Dioxide, Methane and other	Tropospheric CH4	mol/mol	energy budget	Chemistry
ECV_Atmosphere	Greenhouse gases Carbon Dioxide, Methane and other	Stratospheric CH4	mol/mol	energy budget	Chemistry
ECV_Atmosphere	Greenhouse gases Cloud Properties	Cloud amount	scalar	energy budget	Physics
ECV_Atmosphere	Cloud Properties	Cloud Top Pressure	N/m²	energy budget	Physics
ECV_Atmosphere	Cloud Properties	Cloud Top Temperature	к	energy budget	Physics
ECV_Atmosphere	Cloud Properties	Cloud Optical Depth	scalar	energy budget	Physics
ECV_Atmosphere	Cloud Properties	Cloud Water Path(liquid an ice)	kg/m²	energy budget	Physics
ECV_Atmosphere	Cloud Properties	C, effective particle radius (liquid + ice)	m	energy budget	Physics
ECV_Atmosphere	Ozone	Total column ozone		energy budget	Chemistry
ECV_Atmosphere	Ozone	Troposphere Ozone	mol/mol	energy budget	Chemistry
ECV_Atmosphere	Ozone	Ozone profile in upper and lower stratosphere	mol/mol	energy budget	Chemistry
ECV_Atmosphere	Ozone	Ozone profile in upper strato-and mesosphere	mol/mol	energy budget	Chemistry
	-			- 0,	

ECV_Atmosphere	Precursors (supporting the Aerosol and Ozone	NO2 tropospheric column		energy budget	Chemistry
ECV Atmosphere	ECVs) Precursors (supporting the Aerosol and Ozone			energy budget	Chemistry
ECV_Atmosphere	ECVs) Precursors (supporting the Aerosol and Ozone			energy budget	Chemistry
	ECVs)				
ECV_Atmosphere	Precursors (supporting the Aerosol and Ozone ECVs)	CU tropospheric profile	mol/mol	energy budget	Chemistry
ECV_Land	Above-ground biomass		kg/m²	energy budget	Biology
ECV_Land	Albedo	directional-hemispherical reflectance	(W/m²)/(W/m²)	energy budget	Physics
ECV_Land	Albedo	bi-hemispherical reflectance	(W/m²)/(W/m²)	energy budget	Physics
ECV_Land	Anthropogenic Greenhouse Gas Fluxes	Emissions from fossil fuel use, industry, agriculture and waste sectors.	kg	energy budget	Chemistry
ECV_Land	Anthropogenic Greenhouse Gas Fluxes	Emissions/ removals by IPCC land categories	kg	energy budget	Chemistry
ECV_Land	Anthropogenic Greenhouse Gas Fluxes	Estimated fluxes by inversions of observed atmosphere	m³/(m²s)	energy budget	Chemistry
ECV_Land	Anthropogenic Greenhouse Gas Fluxes	Estimated fluxes by inversions of observed atmospheric composition - national	m³/(m²s)	energy budget	Chemistry
ECV_Land	Anthropogenic Greenhouse Gas Fluxes	Hi-res CO2 column concentrations to monitor point sources		energy budget	Chemistry
ECV_Land	Anthropogenic Water Use		m³	water buget	Physics
ECV_Land	Fire	Burnt Areas	m²	energy budget	Physics
ECV_Land	Fire	Active fire maps	m²	energy budget	Physics
ECV_Land	Fire	Fire radiative power	W/m²	energy budget	Physics
ECV_Land	Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)	maps of FAPAR for modelling	W/m²	energy budget	Physics
ECV_Land	Fraction of Absorbed Photosynthetically Active	maps of FAPAR for adaptation	W/m²	energy budget	Physics
ECV_Land	Radiation (FAPAR) Glaciers	Glacier area	m³	water buget	Physics
ECV_Land	Glaciers	Glacier elevation change	m	water buget	Physics
ECV_Land	Glaciers	Glacier mass change	kg	water buget	Physics
ECV_Land	Groundwater	Groundwater volume change	m³	water buget	Physics
ECV_Land	Groundwater	Groundwater level	m	water buget	Physics
ECV_Land	Groundwater	Groundwater recharge	m ³	water buget	Physics
ECV_Land	Groundwater	Groundwater discharge	m³	water buget	Physics
ECV_Land	Groundwater	Wellhead level	m	water buget	Physics
ECV_Land	Groundwater	Water quality		matter budget	Chemistry
ECV_Land	Ice Sheets and ice shelves	Surface Elevation Change	m	water buget	Physics
ECV_Land	Ice Sheets and ice shelves	Ice velocity	m/s²	water buget	Physics
ECV_Land	Ice Sheets and ice shelves	Ice mass change	kg	water buget	Physics
ECV_Land	Ice Sheets and ice shelves	Grounding line location and thickness		water buget	Physics
ECV_Land	Lakes	Lake water level	m	water buget	Physics
ECV_Land	Lakes	Water Extent	m	water buget	Physics
ECV_Land	Lakes	Lake surface water temperature	к	abitotic	Physics
ECV_Land	Lakes	Lake ice thickness	m	heterogeneity water buget	Physics
ECV_Land	Lakes	Lake Ice Cover	m²	water buget	Physics
ECV_Land	Lakes	Lake Colour (Lake Water Leaving Reflectance)	(W/m²)/(W/m²)	energy budget	Physics
ECV_Land	Land cover	Land cover		abitotic	Physics
ECV_Land	Land cover	Land Use		heterogeneity abitotic	Physics
ECV_Land	Land Surface Temperature	Land Surface Temperature	к	heterogeneity abitotic	Physics
	Heat fluxes	Latent Heat flux	W/m²	heterogeneity energy budget	Physics
ECV_Land	Heat fluxes	Sensible Heat flux	W/m²	energy budget	Physics
ECV_Land	Leaf Area Index (LAI)	Leaf Area Index (LAI)		energy budget	Physics
ECV_Land	Permafrost	Thermal State of Permafrost	к	water buget	Physics

FCV/ Lecid					Physics
ECV_Land F	River Discharge	River discharge	m³	water buget	Physics
ECV_Land F	River Discharge	Water Level	m	water buget	Physics
ECV_Land F	River Discharge	Flow Velocity	m/s	water buget	Physics
ECV_Land F	River Discharge	Cross-section		water buget	Physics
ECV_Land S	Snow	Area covered by snow	m²	water buget	Physics
ECV_Land S	Snow	snow depth	m	water buget	Physics
ECV_Land S	Snow	snow water equivalent	m³	water buget	Physics
ECV_Land S	Soil Carbon	%Carbon in soil	kg/kg	abitotic heterogeneity	Chemistry
ECV_Land S	Soil Carbon	Mineral soil bulk density to 30 cms and 1m	kg/m³	abitotic heterogeneity	Physics
ECV_Land S	Soil Carbon	Peatlands total depth of profile, area and location		abitotic heterogeneity	Physics
ECV_Land S	Soil Moisture	Surface soil moisture	%	abitotic heterogeneity	Physics
ECV_Land S	Soil Moisture	Freeze/thaw		abitotic heterogeneity	Physics
ECV_Land S	Soil Moisture	Surface inundation		abitotic heterogeneity	Physics
ECV_Land S	Soil Moisture	Root-zone soil moisture	%	abitotic	Physics
ECV_Ocean 0	Ocean Surface Heat Flux	Latent Heat Flux	W/m²	heterogeneity energy budget	Physics
ECV_Ocean 0	Ocean Surface Heat Flux	Sensible Heat Flux	W/m²	energy budget	Physics
ECV_Ocean S	Sea Ice	Sea Ice Concentration		water buget?	Physics
ECV_Ocean S	Sea Ice	Sea Ice Extent/Edge	m²	water buget	Physics
ECV_Ocean S	Sea Ice	Sea Ice Thickness	m	water buget	Physics
ECV_Ocean S	Sea Ice	Sea Ice Drift	m/s	water buget	Physics
ECV_Ocean S	Sea Level	Global Mean Sea Level	m	water buget	Physics
ECV_Ocean S	Sea Level	Regional Sea Level	m	water buget	Physics
ECV_Ocean S	Sea State	Wave Height	m	water buget	Physics
ECV_Ocean S	Sea Surface Salinity	Sea Surface Salinity	kg/l	water buget	Physics
ECV_Ocean S	Sea Surface Temperature	Sea Surface Temperature	к	water buget	Physics
ECV_Ocean S	Subsurface Curents	Interior Currents	m/s	water buget	Physics
ECV_Ocean S	Subsurface Salinity	Interior Salinity	kg/l	water buget	Physics
ECV_Ocean S	Subsurface Temperature	Interior Temperature	к	water buget	Physics
ECV_Ocean S	Surface Currents	Surface Geostrophic Current	m/s	water buget	Physics
ECV_Ocean S	Surface Stress	Surface Stress		energy budget/water	Physics
ECV_Ocean I	Inorganic Carbon	Interior ocean carbon storage. At least 2 of: Dissolved Inorganic Carbon (DIC), Total Alkalinity		matter budget/water	Chemistry
ECV_Ocean I	Inorganic Carbon	pCO2 (to provide Air-sea flux of CO2)	kg/m	matter budget/water	Chemistry
ECV_Ocean	Nitrous Oxide	Interior ocean N2O	kg/kg; m³/m³	matter budget/water	Chemistry
ECV_Ocean	Nitrous Oxide	N2O air-sea flux	mol/m²*s	matter budget/water	Chemistry
ECV_Ocean	Nutrients	Interior ocean Concentrations of silicate, phosphate, nitrate	kg/kg; m³/m³	matter budget/water	Chemistry
ECV_Ocean 0	Ocean Colour	Water Leaving Radiance	W∙sr ⁻¹ ·m ⁻²	water budget	Physics
ECV_Ocean 0	Ocean Colour	Chlorophyll-a Concentration	kg/kg; m³/m³	matter budget/water	Chemistry
ECV_Ocean 0	Oxygen	Interior ocean Oxygen concentration	kg/kg; m³/m³	matter budget/water	Chemistry
ECV_Ocean 1	Transient Tracers	Interior ocean CFC-12	kg/kg; m³/m³	matter budget/water	Chemistry
ECV_Ocean 1	Transient Tracers	Interior ocean CFC-11	kg/kg; m³/m³	matter	Chemistry
ECV_Ocean 1	Transient Tracers	Interior ocean SF6	kg/kg; m³/m³	budget/water matter budget/water	Chemistry
ECV_Ocean 1	Transient Tracers	Interior ocean tritium	kg/kg; m³/m³	budget/water matter budget/water	Chemistry
ECV_Ocean 1	Transient Tracers	Interior ocean 3He	kg/kg; m³/m³	budget/water matter budget/water	Chemistry

ECV_Ocean	Transient Tracers	Interior ocean 14C	kg/kg; m³/m³	matter budget/water	Chemistry
ECV_Ocean	Transient Tracers	Interior ocean 39Ar	kg/kg; m³/m³	matter budget/water	Chemistry
ECV_Ocean	Marine Habitat Properties	Coral Reefs	m²	abitotic heterogeneity	Physics
ECV_Ocean	Marine Habitat Properties	Mangrove Forests, Seagrass Beds, Macroalgal Communities	m²	abitotic heterogeneity	Physics
ECV_Ocean	Plankton	Phytoplankton		matter budget/water	Chemistry
ECV_Ocean	Plankton	Zoo plankton		matter budget/water	Chemistry

Essential Ocean Variables (EOV)

EV Domain	EV	EV Subvariables	Unit (SI)	EV EI Component	Scientific domain
EOV	Ocean Surface Vector Stress (OSVS)	Equivalent neutral winds	N*m^-2	abiotic heterogenity	
		Stress equivalent neutral winds	N*m^-2	abiotic heterogenity	
		Scalar stress	N*m^-2	abiotic heterogenity	
EOV	Sea State	Significant wave height	m	abiotic heterogenity	Physics
		wave period	s^-1	abiotic heterogenity	Physics
		wave direction		abiotic heterogenity	Physics
		maximum wave height	m	abiotic heterogenity	Physics
		swell		abiotic heterogenity	Physics
		directional spectrum		abiotic heterogenity	Physics
		whitecap fraction	m/s^-1	abiotic heterogenity	Physics
EOV	Sea Ice	Ice extent and area	m and m^2	abiotic heterogenity	Physics
		ice concentration	%	abiotic heterogenity	Physics
		ice thickness	m	abiotic heterogenity	Physics
		ice motion	m*s^-1	abiotic heterogenity	Physics
		fast ice	m	abiotic heterogenity	Physics
		ice type (first year, multi-year)		abiotic heterogenity	Physics
		ice salinity	%	abiotic heterogenity	Physics
		snow cover thickness	m	abiotic heterogenity	Physics
		surface freeze-up and melt time	S	abiotic heterogenity	Physics
		melt pond coverage	m^2	abiotic heterogenity	Physics
EOV	Sea Surface Height (SSH)	Sea level anomaly	m	abiotic heterogenity	Physics
		sea surface height gradients	m/s	abiotic heterogenity	Physics
		sea level extremes	m	abiotic heterogenity	Physics
		tidal range	m	abiotic heterogenity	Physics
EOV	Sea Surface Temperature (SST)	Skin SST	к	abiotic heterogenity	Physics
		subskin SST	к	abiotic heterogenity	Physics
		near surface temperature at stated depth	к	abiotic heterogenity	Physics
		bulk SST	K m^-3	abiotic heterogenity	Physics
EOV	Subsurface Temperature	Foundation SST	к	abiotic heterogenity	Physics
		Bulk SST	K m^-3	abiotic heterogenity	Physics
EOV	Surface Currents	Near surface velocity at stated depth	m s-1	abiotic heterogenity	Physics
		surface geostrophic velocity	m s-1	abiotic heterogenity	Physics
		near-surface Ekman currents	kg m-1 s-1	abiotic heterogenity	Physics
		tidal currents	m s-1	abiotic heterogenity	Physics
		Lagrangian drift	m s-1	abiotic heterogenity	Physics
		Stokes velocity	m s-1	abiotic heterogenity	Physics
		surface speed	m s-1	abiotic heterogenity	Physics
EOV	Ocean Currents (Subsurface)	3-dimensional velocity components	m s-1	abiotic heterogenity	Physics
		geostrophic velocities	m s-1	abiotic heterogenity	Physics
		Ekman currents	kg m-1 s-1	abiotic heterogenity	Physics
		tidal currents	m s-1	abiotic heterogenity	Physics
		quasi-Lagrangian drift	m s-1	abiotic heterogenity	
		speed	m s-1	abiotic heterogenity	

EOV	Sea Surface Salinity (SSS)	Bulk surface salinity	mol kg-1	abiotic heterogenity	Physics
		skin surface salinity	mol kg-1	abiotic heterogenity	Physics
		near surface salinity at stated depth	mol kg-1	abiotic heterogenity	Physics
EOV	Subsurface Salinity	Foundation	mol kg-1	abiotic heterogenity	Physics
		bulk SSS	mol kg-1	abiotic heterogenity	Physics
EOV	Ocean Surface Heat Flux	Latent heat flux	W m^-2 s^-1	energy budget	Physics
		Sensible heat flux	W m^-2 s^-1	energy budget	Physics
		net short wave radiation	W m^-2	energy budget	Physics
		downward shortwave radiation	W m^-2	energy budget	Physics
		upward shortwave radiation	W m^-2	energy budget	Physics
		albedo	ratio	energy budget	Physics
		net longwave radiation	W m^-2	energy budget	Physics
		downward longwave radiation	W m^-2	energy budget	Physics
		upward longwave radiation	W m^-2	energy budget	Physics
		photosynthetically available radiation	W m^-2	energy budget	Physics
EOV	Oxygen	Dissolved Oxygen (O2)	mol kg-1	matter budget	Biogeochemistry
EOV	Nutrients	Nitrate (NO3-)	mol kg-1	matter budget	Biogeochemistry
		Nitrite (NO2-)	mol kg-1	matter budget	Biogeochemistry
		Ammonium (NH4)	mol kg-1	matter budget	Biogeochemistry
		Phosphate (PO4)	mol kg-1	matter budget	Biogeochemistry
		Silicic acid (Si(OH)4)	mol kg-1	matter budget	Biogeochemistry
EOV	Inorganic Carbon	Dissolved Inorganic Carbon (DIC)	mol kg-1	matter budget	Biogeochemistry
		Total Alkalinity (TA)	mol kg-1	matter budget	Biogeochemistry
		Partial pressure of carbon dioxide (pCO2)	Ра	matter budget	Biogeochemistry
		рН	-	matter budget	Biogeochemistry
EOV	Transient Tracers	Chlorofluorocarbons (CFC-12, CFC-11, CFC-113,	ratio	matter budget	Chemistry
		CCl4) Sulphur hexafluoride (SF6)	ratio	matter budget	Chemistry
		tritium	ratio	matter budget	Chemistry
		ЗНе	ratio	matter budget	Chemistry
		14C	ratio	matter budget	Chemistry
		39Ar	ratio	matter budget	Chemistry
EOV	Particulate Matter	Particulate Organic Matter (POM)	mol kg-1	matter budget	Biogeochemistry
		Particulate Organic Carbon (POC)	mol kg-1	matter budget	Biogeochemistry
		Particulate Organic Nitrogen (PON)	mol kg-1	matter budget	Biogeochemistry
		Particulate Organic Phosphorus (POP)	mol kg-1	matter budget	Biogeochemistry
		Particulate Inorganic Carbon (PIC)	mol kg-1	matter budget	Biogeochemistry
		Total Suspended Matter (TSM)	mol kg-1	matter budget	Biogeochemistry
		POC flux	kg m^-2 s^-1	matter budget	Biogeochemistry
		Calcium Carbonate (CaCO3) flux	kg m^-2 s^-1	matter budget	Biogeochemistry
		Biogenic Silica (BSi) flux	kg m^-2 s^-1	matter budget	Biogeochemistry
EOV	Nitrous Oxide	Nitrous Oxide (N2O)	mol kg-1	matter budget	Biogeochemistry
EOV	Stable Carbon Isotopes	13C/12C isotope ratio of Dissolved Inorganic	kg t^-1	matter budget	Biogeochemistry
EOV	Dissolved Organic Carbon	Carbon (DIC) Dissolved Organic Carbon (DOC)	kg t^-1	matter budget	Biogeochemistry
EOV	Ocean Colour	under development			

EOV	Phytoplankton biomass and diversity	Presence/Absence/Relative Abundance		Biotic diversity	Biology
		Diversity/Taxonomy		Biotic diversity	Biology
		Genomic information		Biotic diversity	Biology
		In vitro/In vivo pigment fluorescence		Biotic diversity	Biology
		Pigment concentration by spectrophotometry		Biotic diversity	Biology
		(chlorophyll a, b, HPLC pigments) Spectral reflectance (ocean color/remote sensing		Biotic diversity	Biology
		methods) Primary productivity (different methods)		Matter budget	Biology
EOV	Zooplankton biomass and diversity	Biomass overall		Biotic diversity	Biology
		biomass or abundance (or presence/absence) by		Biotic diversity	Biology
		taxon functional group or size class		Biotic diversity	Biology
EOV	Fish abundance and distribution	Number, biomass or abundance index of fish of		Biotic diversity	Biology
		different taxa per unit volume or area of water in a Numbers or biomass of fish by size/age/stage		Biotic diversity	Biology
EOV	Marine turtle, bird and mammal abundance an	Species presence/absence		Biotic diversity	Biology
		Age		Biotic diversity	Biology
		Sex		Biotic diversity	Biology
		Count data		Biotic diversity	Biology
		Repeated individual presence (tracking/resights)		Biotic diversity	Biology
EOV	Live coral	Live coral cover and areal extent		Biotic diversity	Biology
		Coral diversity (species, genera and functional type; and alpha, beta or gamma)		Biotic diversity	Biology
		Coral condition (diseases, bleaching, mortality (partial and full), predated, silted, other		Biotic diversity	Biology
		Total habitable substrate (less sand/silt substrates, structural complexity)		Biotic diversity	Biology
		Coral size classes (recruits/small corals, size class distribution)		Biotic diversity	Biology
EOV	Seagrass Cover	Shoot density/cover	m^2	Biotic diversity	Biology
		Canopy height	m	Biotic diversity	Biology
		Seagrass diversity (species)		Biotic diversity	Biology
		Areal extent of seagrass meadows		Biotic diversity	Biology
		Photosynthetic efficiency (measured with PAM)		Energy budget	Biology
EOV	Macroalgal canopy cover	Canopy species diversity		Biotic diversity	Biology
		Canopy height	m	Biotic diversity	Biology
		Stem density (kelps)		Biotic diversity	Biology
		Plant condition (qualitative: signs of necrosis and potential drivers, fouling and grazing)		Biotic diversity	Biology
		Plant size classes (including recruits)		Biotic diversity	Biology
		Photosynthetic efficiency		Energy budget	Biology
		Photosynthetic biomass		Energy budget	Biology
		Areal extent	m^2	Biotic diversity	Biology
EOV	Mangrove cover	Mangrove fringe width and area	m^2	Biotic diversity	Biology
		Mangrove tree species composition and zonation		Biotic diversity	Biology
		Tree, algae, and phytoplankton primary production		Biotic diversity	Biology
		Canopy height and trunk girth		Biotic diversity	Biology
		Trunk and seedling density by species		Biotic diversity	Biology
		Soil profile, carbon/nutrient content, and C14 age		Abiotic heterogeneity	Biology
		Sediment and water column respiration		Abiotic heterogeneity	Biology
		Intertidal fish and invertebrate densities		Biotic diversity	Biology
EOV	Ocean Sound	sound pressure	kg s^-2 m^-1	Abiotic heterogeneity	Physics
		particle motion (displacement, velocity, acceleration)	m, m s^-1, m s^-2	Abiotic heterogeneity	Physics
EOV	Microbe biomass and diversity	under development			
EOV	Benthic invertebrate abundance and distributic	under development			

