

,

Deliverable 1.3

Modelling and processing services and
tools

Creator *Department of Mathematics Tullio Levi-Civita, University of

Padova.
** Forschungszentrum Jülich, Institute of Bio- and Geosciences:
Agrosphere (IBG-3).
*** Dipartimento di Salute della Donna e del Bambino, University
of Padova.
**** Dipartimento di Ingegneria Civile, Edile e Ambientale – ICEA,
University of Padova.

Creation date

March 22, 2019

Due date

August 30, 2019

Last revision date

October 04, 2019

Status

Final

Type

Report

Description

This deliverable proposes tools to model data and give predictions
on the evolution of several quantities of interest.

Right

Public

Language

English

2

Citation

Grant agreement

E. Perracchione*, M. Polato*, W. Erb*, F. Piazzon*, F.
Marchetti***, F. Aiolli*, B. Bayat**, A. Botto****, S. De Marchi*,
S. Kollet**, C. Montzka**, A. Sperduti*, M. Vianello*, M. Putti*,
2019. Modelling and processing services and tools.

GEOEssential Deliverable 1.3., ERA-PLANET No 689443

Table of Contents

TABLE OF CONTENTS .. 2

INTRODUCTION ... 3

DATA COMPRESSION ... 4

CARATHEODORY-TCHAKALOFF SUBSAMPLING ... 4

APPROXIMATION WITH VSDKS ... 6

KERNEL-BASED METHODS ... 6
VARIABLY SCALED DISCONTINUOUS KERNELS ... 7

TIME PREDICTION .. 8

KERNEL-BASED METHODS ... 9
SUPPORT VECTOR REGRESSION .. 10

SIMULATIONS FOR COMPRESSION ALGORITHMS .. 11

TEST WITH PADOVA POINTS .. 13
TEST WITH CARATHEODORY-TCHAKALOFF .. 18

SIMULATIONS FOR TIME PREDICTIONS ... 22

CONCLUSIONS ... 23

APPENDIX: ERROR BOUNDS ... 24

APPENDIX: KALMAN FILTER .. 26

REFERENCES .. 29

3

Introduction

The objective of this report is to provide a survey of the mathematical foundation of the
efficient and robust reduced order modelling based on compression/approximation methods.
This task aims at delivering value-added services to Essential Variables (EVs) within the
context of the GeoEssential project (McCallum, et al., 2019). The realm of the EVs of interest
encompasses a large number of Earth observation data types, especially 2D spaceborne
measurements, that necessarily calls for a drastic synthesis. To this aim we here investigate
the use of compression techniques based on least squares Caratheodory-Tchakaloff
subsampling and discontinuous kernel-based interpolation. Once the data is compressed, we
are then able to apply useful machine learning tools for forecasting the dynamics of the EVs.

The huge amount of available satellite data needs model reduction schemes for delivering
the sought services such as, e.g., short term real-time predictions via machine learning
schemes. Effective synthesis can be achieved only via suitable reduced order models that
must be at the same time efficient and accurate to ensure meaningful analysis of the EVs of
interest. Novel theories arising in the field of numerical analysis, and more specifically
approximation theory, provide an opportunity to accomplish these relevant tasks. This
document intends to demonstrate the effectiveness of this combination by developing the
necessary theoretical foundation of approximation algorithms and shows, via simple
examples, the applicability of these modelling tools for the purposes of the GEOEssential
project.

 More specifically, we focus on two aspects of data-based modelling:

• Compression (refer to Section Data compression): reduce the dimensions for satellite
data via either Caratheodory-Tchakaloff or Padova points subsampling (Bos, et al.,
2006) (Bos, et al., 2017) (Piazzon, et al., 2017) (Piazzon, et al., 2017).

• Reconstruction (refer to Section Approximation with VDSKS): accurately approximate
the data with the reduced number of points via either polynomial least squares or
discontinuous kernel-based methods (Bozzini, et al., 2015) (De Marchi, et al., 2017)
(De Marchi, et al., 2019).

These data based reduced models are used as inputs for machine learning schemes. The latter
allow us to predict the time evolution of the considered EVs (refer to Section Time prediction).
This results in an accurate and truly efficient tool for inferring on the dynamics of the
quantities of interest. Precisely, in the following we focus on Support Vector Regression (SVR)
(Shawe-Taylor & Cristianini, 2004) that takes as training examples the reduced data models.
Comparisons with the well-known Ensamble Kalman Filter (EnKF), briefly reviewed in the
Appendix, are also carried out.

After providing a theoretical framework, we test in Sections Simulations for compression
algorithms-Simulations for time predictions and further discuss in Section Conclusions the
proposed techniques for satellite data consisting of the Level 2 soil moisture product obtained
by the NASA Soil Moisture Active Passive (SMAP) satellite (Entekhabi at al., 2014) and
simulated data obtained via the TERRestrial SYStem Modelling Platform (TerrSysMP) (Kollet

4

& Maxwell, 2008) (Shrestha, et al., 2014). Such experiments were carried out with a Python
software which is freely available for the scientific community at
https://github.com/emmaA89/vlabprediction.

Data compression

The schemes we present in this section represent the background for efficiently dealing with
huge data (Perracchione, et al., 2019). To introduce them, we need some mathematical
background recalled in what follows.

Caratheodory-Tchakaloff subsampling

Tchakaloff's theorem is the basis for quadrature theory. It states that for every compactly
supported measure there exists a positive algebraic quadrature formula with a cardinality
that do not exceed the dimension of the exactness polynomial space. This specifically allows
us to compress data, meaning that we are able to extract a reduced number of points such
that the approximation error in reconstructing the original underlying function via Polynomial
Least Squares (POLSs) can be bounded and controlled. Such a strategy is also independent of
the problem geometry and thus enables us to consider specific polygonal regions.

To explain the algorithm we first need to recall the following theorem (Caratheodory, 1911);
see also (Piazzon, et al., 2017) (Piazzon, et al., 2017) (Sommariva & Vianello, 2017).

Theorem 1. Let 𝜇 be a multivariate discrete measure supported at a finite set 𝑋𝑁 =
{𝑥𝑖 , 𝑖 = 1,… , 𝑁} ⊆ Ω, Ω ∈ ℝ𝑑, with correspondent positive weights (masses) ΛN = {𝜆𝑖 , 𝑖 =
1,… ,𝑁} and let 𝑆 = span(𝜙1. . . , 𝜙𝐿) a finite dimensional space of 𝑑-variate functions
defined on Ω ⊇ 𝑋𝑁, with 𝑃 = dim(𝑆|𝑋𝑁) ≤ 𝐿. Then, there exists a quadrature formula with

nodes 𝑇𝑀 = {𝒕𝑖 , 𝑖 = 1,… ,𝑀} ⊆ 𝑋𝑁 and positive weights 𝑊𝑀 = {𝑤𝑖 , 𝑖 = 1,… ,𝑀}, with
𝑀 ≤ 𝑃, such that

𝐼𝜇(𝑓) = ∑𝜆𝑖𝑓(𝑥𝑖)

𝑁

𝑖=1

 = ∑𝑤𝑖𝑓(𝑡𝑖)

𝑀

𝑖=1

, ∀𝑓 ∈ 𝑆|𝑋𝑁 .

In what follows we consider 𝑆 = 𝑃𝑝

𝑑(Ω), i.e., the subspace of 𝑑-variate real polynomials

of total degree not exceeding 𝑝. If Ω is an algebraic variety of ℝ𝑑 , then

dim(𝑆|𝑋𝑁) ≤ dim(𝑆|𝑋𝑁) <𝐿 = dim (𝑃𝑝
𝑑(Ω)) .

In other words, such theorem shows that the original sampling set can be replaced by a
smaller one. Moreover in (Piazzon, et al., 2017), the authors prove that this can be done
keeping practically invariant the least squares approximation estimates. To solve the problem
outlined in Theorem 1, i.e. the one of computing weights and nodes, one can use quadratic
programming, namely the classical Lawson-Hanson active set method for NonNegative Least
Squares (NNLS) or also Linear Programming (LP) via the classical simplex method.

https://github.com/emmaA89/vlabprediction

5

Indeed, restricting our search to polynomials of degree 𝑝, we need to solve the following
quadratic minimum problem

{
min||𝑉𝑇𝑢 − 𝑏||

2
,

𝑢 ≥ 0,

where 𝑉 is the classical Vandermonde matrix and 𝑏 = 𝑉𝑇𝜆. Then, the nonvanishing
components of such a solution give the weights 𝑊𝑀 = {𝑤𝑖 , 𝑖 = 1,… ,𝑀} and the indexes of
the nodes 𝑇𝑀 = {𝑡𝑖 , 𝑖 = 1,… ,𝑀}.

For the linear programming approach, we instead have to find

{
min 𝑠𝑇𝑢,

𝑉𝑇𝑢 = 𝑏,
𝑢 ≥ 0,

where the constraints identify a polytope (the feasible region) and the vector 𝑠 is chosen to
be linearly independent from the rows of 𝑉𝑇.

This method enables us to consider only a few points to reconstruct a given function 𝑓. The
so-constructed algorithm has already been used in (Piazzon, et al., 2017) and we refer to as
CATCH scheme. Precisely, let us consider two subsets: 𝑋𝑁 = {𝑥𝑖 , 𝑖 = 1,… , 𝑁} ⊆ Ω, Ω ⊂ ℝ

𝑑,
the set of distinct data points (or data sites or nodes), arbitrarily distributed on Ω and 𝐹𝑁 =
{𝑓𝑖 , 𝑖 = 1,… , 𝑁} ⊆ ℝ𝑑, the associated set of data values (or measurements or function
values). We model the function 𝑓 by considering 𝑀 points extracted via Theorem 1 and then
we apply some approximation schemes, such as in this case, POLSs.

Remark 1. Note that, for the spatial data we can think of 𝑋𝑁 as the set of pixels with the
associated values 𝐹𝑁. Then, we construct the reduced model and by evaluating it, we can
reconstruct the image at each pixel via the approximated values, namely 𝑦𝑘 , 𝑘 = 1,… ,𝑁.

We also stress the fact that the data might be characterized by steep gradients or
discontinuities and thus ad hoc meshfree methods might be of interest. Therefore, as a
second reconstruction scheme after the compression we propose kernel-based methods
constructed via (possibly) discontinuous bases as an alternative to POLSs. This approach is
outlined in the next section and enables us to partially overcome the Gibbs phenomenon;
refer to (Fornberg & Flyer, 2008) (Gottlieb & Shu, 1997) (Jung, 2007) for a general overview.

As a final remark on this section, we point out that if there are no special needs of focusing
on a particular region of interest, but the whole (square or rectangular) image needs to be
compressed and reconstructed, then a good choice for reducing samples is the one of
considering the so-called Padova points; refer e.g. to (Bos, et al., 2006). Indeed, since on those
nodes the Lebesgue constant grows logarithmically with respect to the number of nodes, the
polynomial approximation turns out to be stable.

6

Padova points subsampling

The Padova points belong to four families which only differ because of the position of the
Padova points on two consecutive vertices of the square [−1,1]2. In particular, for each family
of Padova points, two nodes lie on consecutive vertices of the square [−1,1]2, 2𝑝 − 1 points
lie on the edges of the square, and the remaining points lie on the self-intersections of a
generating curve inside the square.

The one we consider here are so generated: letting 𝑝 a natural number, we define

𝑇𝑀 = { 𝜑 (
𝑘 𝜋

𝑝(𝑝 + 1)
) , 𝑘 = 0,… , 𝑝(𝑝 + 1)},

where

𝑀 =
(𝑝 + 1)(𝑝 + 2)

2
,

and

𝜑(𝑡) = (−cos((𝑝 + 1)𝑡),−cos(𝑝𝑡)) , 𝑡 ∈ [0, 𝜋].

Note that 𝜑 is a closed parametric curve in the interval [0,2𝜋], and is a special case of Lissajous
curves; see (Bos, et al., 2017) (De Marchi, et al., 2017) (Erb, 2016).

Approximation with VSDKs

The second reconstruction scheme we propose is based on interpolating the function values
via kernel-based methods briefly reviewed below and then extended to work with
discontinuous bases.

Kernel-based methods

After compressing the image as explained in the previous section, we want to find an
interpolating function 𝑃𝑓: Ω → ℝ such that:

𝑃𝑓(𝑡𝑖) = 𝑓𝑖 , 𝑖 ∈ {1, … ,𝑀}.

Since the extracted nodes are scattered, meshfree or meshless methods turn out to be
particularly suitable. Indeed, they are easy to implement in any dimension.

In RBF interpolation, we suppose to have a univariate function 𝜙: [0,∞) → ℝ that provides,
for 𝑡, 𝑧 ∈ Ω, the real symmetric strictly positive definite kernel

𝐾(𝑡, 𝑧) = 𝜙 (||𝑡 − 𝑧||
2
).

The interpolating function 𝑃𝑓 on the reduced nodes can be written as

7

𝑃𝑓(𝑡) = ∑𝑐𝑘𝐾(𝑡, 𝑡𝑘), 𝑡 ∈ Ω

𝑀

𝑘=1

To find the coefficients, we simply have to solve the linear system of equations (Fasshauer,
2007) (Fasshauer, 2007)

𝐴𝑐 = 𝑓,

where 𝑐 = (𝑐1, … , 𝑐𝑀)

𝑇, 𝑐 = (𝑓1, … , 𝑓𝑀)
𝑇 , and

(𝐴)𝑖𝑘 = 𝐾(𝑡𝑖 , 𝑡𝑘), 𝑖, 𝑘 = 1,… ,𝑀.

Since we suppose 𝐾 symmetric and strictly positive definite, this system has exactly one
solution.

Variably scaled discontinuous kernels

We consider now a scenario in which piecewise continuous functions are approximated with
discontinuous kernels. Note that this framework is the one that characterizes satellite data
over land surfaces, where no measurements are over the oceans and/or there are regions
masked out due to lakes, built-up areas or huge forests. We consider the following general
setting (refer to (De Marchi, et al., 2019)):

Assumption 1. We assume that:

1. The bounded set Ω ⊂ ℝ𝑑 is the union of 𝑛 pairwise disjoint sets Ω𝑖, 𝑖 ∈ {1,… , 𝑛}.
2. The subsets Ω𝑖 satisfy an interior cone condition and have a Lipschitz boundary.
3. We define an auxiliary function 𝜓:Ω →Σ, Σ ⊂ ℝ so that it is constant on the

subsets Ω𝑖, i.e., 𝜓(𝑡) = 𝛼𝑖 , for 𝑡 ∈Ω𝑖. If, for 𝑖 ≠ 𝑗, Ω𝑖
̅̅ ̅̅ ∩ Ω𝑖

̅̅ ̅̅ ≠ ∅ holds true, then
also 𝛼𝑖 ≠ 𝛼𝑗. In other words, the piecewise constant function 𝜓 is discontinuous at

the boundaries of Ω𝑖.

The function 𝜓 is used to mimic the discontinuities of the original function/image and thus,
we consider now the following variably scaled discontinuous kernels (VSDKs) see (De Marchi,
et al., 2019) and also refer to (Bozzini, et al., 2015) for the general definition of VSKs.

Definition 1. Assume that all prerequisites in Assumption 1 are given and let 𝐾 be a
continuous strictly positive definite kernel on Ω×Σ ⊂ ℝ𝑑+1 defined by a radial basis
function 𝜙. We define a VSDK 𝐾𝜓 on Ω as

 𝐾𝜓(𝑡, 𝑧):= 𝐾 ((𝑡, 𝜓(𝑡)), (𝑧, 𝜓(𝑧))) = 𝜙 (√||t − z||2
2 + (𝜓(𝑡) − 𝜓(𝑧))

2
),

for 𝑡, 𝑧 ∈ Ω.

We now use the following notation 𝑡̂ = (𝑡, 𝜓(𝑡)) and we define the on intepolant Ω × Σ, as

8

𝑃𝑓(𝑡̂) = ∑𝑐𝑘𝐾(𝑡̂, 𝑡̂𝑘)

𝑀

𝑘=1

.

Then the VSDK interpolant 𝑉𝑓 on Ω is given by

𝑉𝑓(𝑡) = 𝑃𝑓(𝑡̂) = ∑𝑐𝑘𝐾𝜓(𝑡, 𝑡𝑘)

𝑀

𝑘=1

, 𝑡 ∈ Ω.

The computation of the VSDK interpolant turns out to be trivial. Indeed, for the given node

set 𝑇𝑀 ⊂ Ω, we consider the associated node set 𝑇̂𝑀 = {𝑡̂1, … , 𝑡̂𝑀} and the coefficients
𝑐1, … , 𝑐𝑀 of the interpolant 𝑉𝑓(𝑡) are computed by solving

𝐴𝜓𝑐 = 𝑓,

where

𝐴𝜓 = (
𝐾(𝑡̂1, 𝑡̂1) ⋯ 𝐾(𝑡̂1, 𝑡̂𝑀)

⋮ ⋱ ⋮
𝐾(𝑡̂𝑀 , 𝑡̂1) ⋯ 𝐾(𝑡̂𝑀 , 𝑡̂𝑀)

).

For details about the error bounds please refer to the Appendix.
As a final tool, we will also present SVR. Indeed, the reduced models for the images enable us
to give predictions in time which turn out to be accurate and efficient.

Time prediction

Machine learning (see (Shawe-Taylor & Cristianini, 2004) for a general overview) is a field of
computer science which aims to discover patterns from data. In other words, its goal consists
in understanding which relation links inputs and outputs. In particular, SVR can be used in our
context in order to give reliable predictions on the future dynamics. We thus suppose to have
a set of 𝑇 grids, with same pixels and an underlying function which varies in time, i.e. a set of

pixels 𝑋𝑁 = {𝑥𝑖 , 𝑖 = 1, … , 𝑁} ⊆ Ω and the function values at each time step, i.e. 𝐹𝑁
𝑗
=

{𝑓𝑖
𝑗
, 𝑖 = 1, … , 𝑁} ⊆ ℝ, 𝑗 = 1,… , 𝑇. To infer on the dynamics of the process, one could apply,

e.g. regression tools, pixel by pixel. This would be truly expensive and therefore, we propose
to study the time evolution only for the reduced set of points selected via Padova of
Caratheodory-Tchakaloff subsampling. Then, once we get the estimations for the time step

𝑇 + 1, i.e. 𝑦𝑖̂
𝑇+1, 𝑖 = 1, … ,𝑀, we reconstruct the predicted image on the whole domain by

means of VSDKs and we produce an estimation of the image evolution, i.e. we produce the

set 𝑦𝑖
𝑇+1, 𝑖 = 1, … , 𝑁, which approximate the true solution 𝑓𝑖

𝑇+1. About reduced models for
machine learning we also refer the reader to (Aminian Shahrokhabadi, et al., 2019).

9

To point out how SVR works, we focus on the 𝑖-th point, i.e. the index 𝑖 is fixed if not elsewhere

noted. Given 𝑇𝑇
𝑖 = {𝑡𝑖

𝑗
, 𝑗 = 1,… , 𝑇}, and 𝐹𝑇

𝑖 = {𝑓𝑖
𝑗
, 𝑗 = 1, … , 𝑇}, we formally define the

training set 𝐷𝑖 = 𝑇𝑇
𝑖 × 𝐹𝑇

𝑖 , in which we assume there exists a function (i.e., relation) such
that

𝑔𝑖(𝑡𝑖
𝑗
) ≈ 𝑓𝑖

𝑗
,

for (𝑡𝑖
𝑗
, 𝑓𝑖

𝑗
) ∈ 𝐷𝑖 . Again, a learning algorithm tries to find a function, i.e. a mode, that

approximates the unknown function 𝑔𝑖 as tightly as possible.

To this aim, we consider kernel-based methods which are one of the most used machine
learning approaches. They take advantage of the so-called kernel trick which allows to
implicitly compute vector similarities (defined in terms of dot-product).

Kernel-based methods

Focusing on strictly positive and symmetric kernels, we know that 𝐾(𝑡, 𝑧) admits the following
expansion

𝐾(𝑡, 𝑧) = ΦT(𝑡)Φ(𝑧),

where Φ:Ω → 𝐺 is a mapping function from Ω to the embedding feature space 𝐺 (Shawe-
Taylor & Cristianini, 2004). Kernel machines are a particular family of machine learning
methods that try to minimize the following problem:

argmin
𝑔𝑖∈𝐺

𝐿(𝑔𝑖(𝑡𝑖
1),… , 𝑔𝑖(𝑡𝑖

𝑇)) + Λ||𝑔𝑖||𝐺 ,

where 𝐿 is the so-called loss function associated to the empirical error, Λ is a trade-off
parameter also known as regularization parameter. We assume that the solution of such kind
of problem can be expressed as

𝑔𝑖(𝑡) = 𝑤𝑖
𝑇Φ(𝑡) = ∑𝑐𝑗𝐾(𝑡𝑖

𝑗

𝑇

𝑗=1

, 𝑡),

which means that 𝑔𝑖 can be expressed as a hyperplane in a feature space defined by the
function Φ, and hence it can be seen as a weighted sum of kernels between the input vector
and the vectors in the training set. The intuition behind this result is that, by using the
embedding function Φ, the data are projected into a (usually higher dimensional) space in
which the hypothesis we are looking for becomes a linear function that can be expressed in
terms of training examples.

We now focus on support vector machine, which is the most famous kernel method and
represents the state of the art performances in many learning tasks.

10

Support vector regression

Support vector machine is usually used for classification tasks, but it can be easily adapted to
regression (SVR) (Cortes & Vladimir, 1995). The SVR problem in its primal form is given by

min
𝑤𝑖,𝑏𝑖,𝜉𝑖,𝜉𝑖

∗

1

2
||𝑤𝑖||2

2 + 𝐶 ∑𝜉𝑖𝑗 + 𝜉𝑖𝑗
∗

𝑇

𝑗=1

,

subject to

𝑓𝑖
𝑗
−𝑤𝑖

𝑇Φ(𝑡𝑖
𝑗
) − 𝑏 ≤ 𝜖 + 𝜉𝑖𝑗 ,

−𝑓𝑖
𝑗
+𝑤𝑖

𝑇Φ(𝑡𝑖
𝑗
) + 𝑏 ≤ 𝜖 + 𝜉𝑖𝑗

∗ ,

𝜉𝑖𝑗
∗ , 𝜉𝑖𝑗 ≥ 0.

for 𝑗 = 1, … , 𝑇, where the objective function aims to minimize the squared norm of the
hypothesis in order to get a smooth function, while maintaining the number of errors as low
as possible. 𝐶 represents the trade-off hyper-parameter. The hyper-parameter 𝜖 indicates the
width of the tube in which the examples can fall into without being counted as errors.

This problem is usually solved in its dual form defined as

min
𝑐𝑖,𝑐𝑖

∗

1

2
∑ (𝑐𝑖,𝑘 − 𝑐𝑖,𝑘

∗)(𝑐𝑗,𝑘 − 𝑐𝑗,𝑘
∗)

𝑇

𝑘,𝑗=1

𝐾(𝑡𝑖
𝑘 , 𝑡𝑖

𝑗
) + ∑(𝑐𝑖,𝑘 + 𝑐𝑖,𝑘

∗)𝜖

𝑇

𝑘=1

 − ∑ (𝑐𝑖,𝑘 − 𝑐𝑖,𝑗
∗)𝑓𝑖

𝑘

𝑇

𝑘,𝑗=1

,

and

∑(𝑐𝑖,𝑘 + 𝑐𝑖,𝑘
∗) = 0

𝑇

𝑘=1

,

𝑐𝑖,𝑘 , 𝑐𝑖,𝑘
∗ ∈ [0, 𝐶].

Then, the final regression model reads as follows:

𝑔𝑖(𝑡) = ∑ (𝑐𝑖,𝑗 − 𝑐𝑖,𝑗
∗)

𝑗∈𝑆𝑉

𝐾(𝑡, 𝑡𝑖
𝑗
) + 𝑏,

where SV is the set of training examples 𝑡𝑖
𝑗
 such that the corresponding 𝑐𝑖,𝑗 or 𝑐𝑖,𝑗

∗ are not

both zero, and they are called support vectors.

Concerning the implementation, we make use of the Python package scikit-learn freely
available on the Github repository at https://github.com/scikit-learn/scikit-learn.

As a comparison with SVR, in the experiments we also consider the so-called Kalman Filter.
Once we construct the reduced model, in the context of data assimilation, the aim is to
incorporate new observations and predictions into the model state of a numerical model. To

https://github.com/scikit-learn/scikit-learn

11

this aim, the well-known scheme based on the so-called Ensemble Kalman Filter (EnKF) is
usually employed. For more details on that, we refer the reader to the Appendix and e.g. to
(Gillijns, et al., 2006) (Johns & Mandel, 2008) (Kalman, 1960). In the following test it is
implemented via the Python package filterpy freely available on the Github repository at
https://github.com/rlabbe/filterpy. Refer also to the Appendix.

Simulations for compression algorithms

In the numerical experiments that follow, we consider two test data sets representing the soil
moisture over Europe. Soil moisture is a key variable for hydrology which turns out to be
meaningful for many applications, such as modeling and forecast of climate variability and
water resources management. Moreover, soil moisture is now recognized as an essential
variable (EV), playing an important role in addressing the UN’s SDGs, either directly or
indirectly. For instance, soil moisture content may influence access to available water
(targeting SDG no. 6), control land-atmosphere feedback and interactions (targeting SDG no.
13), affect land surface properties and ecosystem functioning (targeting SDG no. 15), and crop
biomass and yield productions (targeting SDG no. 2). Such links may even be of great
importance in arid and semi-arid regions facing water shortage and intensive droughts.

The first grid we consider is plotted in Figure 1 (left) and consists of soil moisture data taken
by NASA Soil Moisture Active Passive (SMAP) mission in April 2015 (Entekhabi at al., 2014).
The space segment has been launched on January 31, 2015, and the mission is designed to
principally measure soil moisture globally. In what follows we might refer to such grid as raw
data image. The second test grid is plotted in Figure 1 (right) and it consists of simulated soil
moisture data obtained via the TERRestrial SYStem Modelling Platform (TerrSysMP) that was
developed to simulate the interaction between lateral flow processes in river basins with the
lower atmospheric boundary layer (Kollet & Maxwell, 2008) (Shrestha, et al., 2014). The
Centre for High-Performance Scientific Computing in terrestrial systems (HPSC TerrSys) is
operating TerrSysMP in a forecasting setup over North Rhine-Westphalia and Europe. The
model results are made available for the scientific community daily as videos via the YouTube
Channel of HPSC TerrSys
https://www.youtube.com/channel/UCGio3ckQwasR5a_kJo1GdOw.

Starting with the two grids of soil moisture reported in Figure 1 we extract two sub-regions
used in our simulations and plotted in Figure 2. After compression, the reconstruction scheme
is carried out in two ways: 1) POLSs and 2) VSDKs. The second method turns out to be
meaningful when discontinuities appear, indeed it reduces the Gibbs effect.

The two approximation methods are compared in terms of Compress Ratio (CR) and Mean
Square Error (MSE).

MSE =
1

𝑁
∑(𝑓𝑖 − 𝑦𝑖)

2.

𝑁

𝑖=1

https://github.com/rlabbe/filterpy

12

Letting 𝑆 the number of coefficients that need to be computed for POLSs and VSDKs, the CR
is given by

CR =
𝑁

𝑆
,

where for VSDK interpolation 𝑆 = 𝑀, while for the POLSs scheme it is linked to the polynomial
degree denoted by 𝑝.
Furthermore, the accuracy of the fit is also compared in terms of the Peak Signal to Noise
Ratio (PSNR)

PSNR = 20 log10 (
255

MSE
) .

To validate our models, we also compute the so-called variograms (Bricio Hernandez, 1995).
We use them for two scopes: 1) check that the spatial correlation of the extracted data via
subsampling is comparable to the one of the original image, 2) check that the spatial
correlation of the reconstructed image is comparable to the one of the original image.

To briefly review the variogram theory, let us represent a given random process by the model
(Oliver & Webster, 2014)

𝑍(𝑡) = 𝜇 + 𝜖(𝑡)

where 𝜇 is the mean of the process, 𝑡 ∈ Ω and 𝜖(𝑡) is a random quantity with zero mean
and a covariance, COV(𝑙), given by

COV(𝑙) = E[ϵ(t)ϵ(t + l)].

In these equations 𝑙 is the separation between samples in both distance and direction and E
denotes the expectation. If the mean is not constant, we make the following assumption:

E[𝑍(𝑡) − 𝑍(𝑡 + 𝑙)] = 0

Then, the covariance is replaced by the semivariance. In this way, we are able to define the
so-called variogram whose formula is given by

𝛾(𝑙) =
1

2
VAR[𝑍(𝑡) − 𝑍(𝑡 + 𝑙)].

Concerning the experimental variogram, i.e. the one computed via the samples, we use the
method of moments (Matheron, 1965) for which

𝛾̂(𝑙) =
1

2𝑚(𝑙)
∑[𝑓(𝑡𝑖) − 𝑓(𝑡𝑖 + 𝑙)]

2,

𝑚(𝑙)

𝑖=1

where 𝑚(𝑙) is the number of paired comparisons at lag 𝑙. By computing such quantity, we are
able to check if the spacial correlation is preserved in the approximation process. Usually,
aside the graphical results one tries to fit the empirical variograms with known models. Here

13

we consider one of the most appreciated models in geostatistics, i.e. the spherical fit. Thus,
letting 𝑙1 = ||𝑙||2, we define

𝛾̂(𝑙1) =

{

 α0 + α (

3𝑙1
2𝑟

−
𝑙1
3

2𝑟3
) , 0 < l1 ≤ r,

α0 + α, l1 > r,
0, 𝑙1 = 0,

where the parameters to fit are α0, the nugget variance, α the spatially correlated variance,
and 𝑟 the range, which is the limit of spatial correlation. Moreover, the quantity α0 + α
estimates the variance of the random process and is known as the sill. We also remark that
the nugget variance represents the uncorrelated variation at the scale of sampling (Oliver &
Webster, 2014).

Figure 1: Left: Image taken by SMAP satellite on April 2015. The image size is 1624 × 3856. Right: Image
obtained via the terrestrial system modelling platform (TerrSysMP) satellite on May 2018. The image size

is 436 × 424.

Test with Padova points

At first, we test our technique on these soil moisture data sampled over the whole domain Ω,
i.e. on rectangular grids, and then we focus on particular polygonal areas.

Being the domain a rectangle we reduce the grid size taking a few samples at the Padova
points. An example of their distribution is plotted in Figure 3. The polynomial
interpolation/approximation over those points takes advantage of a very slow growth of the
Lebesgue constant. Further, they cluster at the boundary where usually the error is higher.
For both images, we fist compress the data via Padova points and then we reconstruct the
image for testing the accuracy of our procedure.

After compressing the two images (raw and simulated data, respectively composed by 𝑁 =
27504 and 𝑁 = 29998 pixels) via the Padova points, the two reconstruction schemes are
compared in terms of CR and MSE. The results, obtained by varying the polynomial degree
and consequently 𝑀, are reported in Tables 1 and 2 for respectively raw and simulated
images. The CPU times for the raw data needed for the reconstruction algorithms are also

14

shown. We omit further tests in this direction, indeed similar results hold for all the
considered tests.

Figure 2: Left: the selected image for tests with SMAP satellite; its size is 𝑁 = 191 × 144. Right: the
selected image for tests with TerrSysMP; its size is 𝑁 = 106 × 283.

Figure 3: Examples of extracted Padova points.

15

Method 𝒑 𝑴 ⌊𝑪𝑹⌋ PSNR CPU MSE

POLSs 20 -- 119 66.9 1.07 1.29E-02
VSDKs -- 231 199 71.0 0.98 1.29E-02

POLSs 30 -- 55 67.8 4.52 1.05E-02

VSDKs -- 496 55 72.9 1.52 3.26E-03

POLSs 40 -- 31 68.7 18.7 8.66E-03

VSDKs -- 861 31 73.2 3.14 3.04E-03

POLSs 50 -- 20 75.6 5.02 1.75E-03
VSDKs -- 1326 20 69.8 157 6.72E-03

POLSs 60 -- 14 77.0 7.45 1.26E-03

VSDKs -- 1891 14 70.3 379 6.00E-03

POLSs 70 -- 10 77.9 10.6 1.04E-03

VSDKs -- 2556 10 69.3 57.3 7.57E-03

POLSs 80 -- 8 70.3 904 5.49E-03
VSDKs -- 3321 8 78.8 15.5 8.52E-04

POLSs 90 -- 6 71.0 2156 5.10E-03

VSDKs -- 4186 6 79.5 19.8 7.27E-04

Table 1: Results for the compression algorithms used for the raw data image.

 Method 𝒑 𝑴 ⌊𝑪𝑹⌋ PSNR MSE
POLSs 20 -- 129 67.4 1.17E-02

VSDKs -- 231 129 85.2 1.92E-04

POLSs 30 -- 60 69.0 8.10E-03

VSDKs -- 496 60 85.4 1.86E-04

POLSs 40 -- 34 69.8 6.68E-03

VSDKs -- 861 34 85.6 1.76E-04
POLSs 50 -- 22 70.5 5.70E-03

VSDKs -- 1326 22 86.2 1.53E-04

POLSs 60 -- 5 71.0 5.06E-03

VSDKs -- 1891 15 86.7 1.37E-04

POLSs 70 -- 11 71.4 4.66E-03

VSDKs -- 2556 11 87.0 1.28E-04

POLSs 80 -- 9 71.7 4.31E-03

VSDKs -- 3321 9 87.1 1.23E-04

POLSs 90 -- 6 72.0 4.08E-03

VSDKs -- 4186 6 87.4 1.17E-04

Table 2: Results for the compression algorithms used for the simulated data image.

As evident from Tables 1 and 2, the compression via Padova points is particularly effective.
Nevertheless, the reconstruction via POLSs suffers from the Gibbs phenomenon. Kernels in a
varying scale setting show their robustness in dealing with the Gibbs phenomenon.
To have graphical feedback, we report several reconstruction results in Figures 4 and 5. We
can graphically note that when 𝑀 grows while VSDKs are truly performing, the POLSs scheme
suffers from the Gibbs phenomenon.

16

Figure 4: Reconstruction of the raw data image via POLSs and VSDKs interpolation (left and right,
respectively) for 𝑝 = 30 and 90 (top and bottom respectively).

Finally, in Figure 6 we show the empirical variograms for the raw data image. They are
computed via the Python package PyKrige freely available on the Github repository at
https://github.com/bsmurphy/PyKrige. We should note from the two frames on the top of
Figure 6 that the empirical variograms computed on a few extracted Padova points (with the
known values at those points) are similar to the one computed for the original image. This is
a confirmation about the fact that approximating on Padova points turns out to be reliable.
However, the variogram on the extracted data shows a moderate hole-effect. This is due to
the particular distribution of Padova points that cluster at the boundary. Nevertheless, since
the error at the boundary is usually higher, this is certainly not a drawback. Concerning the
other variograms, they are computed on the reconstructed grids in the same framework of
Figures 4. As expected, while VSDKs maintain the spatial correlation, POLSs show their
difficulties.

https://github.com/bsmurphy/PyKrige

17

Figure 5: Reconstruction of the simulated data image via POLSs and VSDKs interpolation (left and right,

respectively) for 𝑝 = 30 and 90 (top and bottom respectively).

Figure 6: This figure refers to the raw data image. From left to right, top to bottom. 1) The variogram of
the original image. 2) The variogram on a few extracted Padova points for 𝑝 = 90 (with the known values

at those points). 3) The variogram of the reconstructed image with POLSs (𝑝 = 90). 4) The variogram of
the reconstructed image with VSDKs (𝑝 = 90).

18

Test with Caratheodory-Tchakaloff

Since it might be of interest focusing the attention on particular areas and/or (partially)
removing points lying on the sea or on masked regions, extracting points on polygons is
meaningful. The reduced nodes are thus extracted via the CATCH scheme. Tests are carried
out via the images plotted in Figure 7.

Figure 7: Top Left: the selected polygonal image for tests with SMAP satellite; its size is 𝑁 = 10880
Right: the selected polygonal image for tests with TerrSysMP; its size is 𝑁 = 6440. Examples of

Caratheodory-Tchakaloff points are plotted in red. Bottom: zoom of the two figures.

The results of the compression and reconstruction via both POLSs and VSDKs are reported in
Tables 3 and 4. We note that in this case the two methods apparently behave similarly.
However, VSDKs are not completely suitable for the simulated data type. In this case, being
the field to reconstruct smooth, POLSs outperform VSDKs.

19

 Method 𝒑 𝑴 ⌊𝑪𝑹⌋ MSE

POLSs 10 -- 164 1.48E-02

VSDKs -- 66 164 8.03E-03

POLSs 15 -- 80 1.27E-02

VSDKs -- 136 80 4.44E-03

POLSs 20 -- 47 1.08E-02
VSDKs -- 231 47 4.59E-03

POLSs 25 -- 30 9.60E-03

VSDKs -- 351 30 2.93E-03

POLSs 30 -- 21 8.96E-03

VSDKs -- 496 21 2.41E-03

POLSs 35 -- 16 7.99E-03
VSDKs -- 666 16 1.35E-03

POLSs 40 -- 12 7.83E-03

VSDKs -- 861 12 1.16E-03

POLSs 45 -- 10 7.60E-03

VSDKs -- 1080 10 9.75E-04

Table 3: Results for the compression algorithms used for the raw data polygonal image.

 Method 𝒑 𝑴 ⌊𝑪𝑹⌋ MSE

POLSs 10 -- 97 3.21E-04

VSDKs -- 66 97 3.80E-04

POLSs 15 -- 47 2.93E-04
VSDKs -- 136 47 3.99E-04

POLSs 20 -- 27 2.82E-04

VSDKs -- 231 27 2.93E-04

POLSs 25 -- 18 2.54E-04

VSDKs -- 351 18 3.25E-04

POLSs 30 -- 13 2.28E-04
VSDKs -- 495 13 2.88E-04

POLSs 35 -- 9 2.27E-04

VSDKs -- 662 9 2.75E-04

POLSs 40 -- 7 2.17E-04

VSDKs -- 854 7 2.68E-04

POLSs 45 -- 6 2.29E-04
VSDKs -- 1059 6 2.52E-04

Table 4: Results for the compression algorithms used for the simulated data polygonal image.

To have a graphical feedback, in Figures 8 and 9 we plot the reconstruction of the two grids
for different polynomial degrees. For the raw data grid, we can note that the Gibbs
phenomenon is evident for large number of data sites. Such effect is mitigated via VSDKs. For
the simulated data image instead, smooth approximations via POLSs are preferable.

20

Figure 8: Reconstruction of the raw data polygonal image via POLSs and VSDKs interpolation (left and

right, respectively) for 𝑝 = 15 and 45 (top and bottom respectively).

Finally, in Figures 10 and 11 we show the empirical variograms. We should note from the two
frames on the top of Figures Figures 10 and 11 that the empirical variograms computed on a
few extracted Caratheodory-Tchakaloff points (with the known values at those points) are
similar to the one computed for the original image, even if we register a modest loss in the
space correlation. Concerning the other variograms, they are computed on the reconstructed
images in the same framework of Figures 8 and 9. As expected, both POLSs and VSDKs
maintain the spatial correlation.

21

Figure 9: Reconstruction of the simulated data polygonal image via POLSs and VSDKs interpolation (left

and right, respectively) for 𝑝 = 15 and 45 (top and bottom respectively).

22

Figure 10: his figure refers to the polygonal raw data image. From left to right, top to bottom. 1) The
variogram of the original image. 2) The variogram on a few extracted Caratheodory-Tchakaloff points for

p=45 (with the known values at those points). 3) The variogram of the reconstructed image with POLSs
(p=45). 4) The variogram of the reconstructed image with VSDKs (p=45).

Figure 10: his figure refers to the polygonal raw data image. From left to right, top to bottom. 1) The
variogram of the original image. 2) The variogram on a few extracted Caratheodory-Tchakaloff points for

p=45 (with the known values at those points). 3) The variogram of the reconstructed image with POLSs
(p=45). 4) The variogram of the reconstructed image with VSDKs (p=45).

Simulations for time predictions

In this section we point out how we can produce efficient prediction on the dynamics of the
considered quantities. The following soil moisture products are processed by the ParFlow
system. We take 91 data takes sampled at different time steps (1h) between 10/04/19 and
12/04/19. During that period a perturbation passed over Greece and thus we focus on that
area. The training set consists of the first 90 images and pixel by pixel one could perform both
SVR and EnKF. But taking all pixels would be truly inefficient. Thus, we only take into account
1891 Padova points and we reconstruct the final figure via VSDKs.

The original image at the 91st time step and related variogram are plotted in Figure 11.
The graphical results of our prediction via both SVR and EnKF are displayed in Figure 12 and
for both methods the MSE is about 2𝐸 − 03.

23

Figure 11: The original image whose size is 206 × 151.

Figure 12: The image predicted via SVR and EnKF (top, left and right respectively).

Conclusions

In this work we presented an effective tool for data compression. Points are extracted via
approximation techniques which gained much attention in the last years. Because of the
specific application considered here, i.e. approximating satellite data, aside POLSs a robust
reconstruction scheme, based on VSDKs which take advantage of reducing the Gibbs
phenomenon, has been extensively studied and tested. Numerical results are promising and
show that, provided the field is smooth, POLSs are preferable. Otherwise switching to VSDKs
is preferable. Finally, we also provided promising examples devoted to investigate the

24

dynamics of the considered quantities. Work in progress consists in investigating data fusion
algorithms for effectively extract features from the given data products.

Appendix: Error bounds

To introduce later error bounds for VSDKs, we start with standard kernels by defining the
space (Wendland, 2005)

𝐻𝐾 = span{𝐾(∙, 𝑡), 𝑡 ∈ Ω},

with an associated bilinear form (∙,∙)𝐻 that makes 𝐻𝐾 an inner product space with
reproducing kernel 𝐾; see (Wendland, 2005). The native space 𝑁𝐾 of the kernel 𝐾 is then

defined as the completion of 𝐻𝐾 with respect to the norm || ∙ ||𝐻 = √(∙,∙)𝐻.

The power function 𝑃𝐾,𝑇𝑀will help us to find an upper bound for the interpolation error.

Setting

𝜅𝑇(𝑡) = (𝐾(𝑡, 𝑡1), … , 𝐾(𝑡, 𝑡𝑀)),

we have (Fasshauer & McCourt, 2015)

𝑃𝐾,𝑇𝑀 = ||𝐾(∙, 𝑡) − 𝜅
𝑇(𝑡)𝐴−1 𝜅(𝑡)||𝑁𝐾 = 𝐾(𝑡, 𝑡) − 𝜅𝑇(𝑡)𝐴−1 𝜅(𝑡),

where the last equality is a consequence of the reproducing property (Wendland, 2005), i.e.

(𝑓, 𝐾(∙, 𝑡))
𝑁𝐾
 = 𝑓(𝑡), 𝑓 ∈ 𝑁𝐾.

Finally, we need to introduce the so-called fill distance, see (Fasshauer, 2007)

ℎ𝑇𝑀 = sup
𝑡∈Ω

min
𝑡𝑘∈𝑇𝑀

||t − tk||2.

It is an indicator of how Ω is filled out by points and is related to error bounds (refer e.g. to
Theorem 14.5 in (Fasshauer, 2007) p. 121).

We now provide error bounds for VSDKs in terms of the power function 𝑃𝐾𝜓,𝑇𝑀 and fill

distance; see (De Marchi, et al., 2019). For further details on the native spaces induced by the
discontinuous kernels we refer the reader to (De Marchi, et al., 2019). In that paper, an error
bound (more strict than the one reported here for Sobolev kernels) is shown. However, due
to its technicality, we decide to propose the following and more general one that in particular
offers a computable error bound. Refer to also to (Fasshauer & McCourt, 2015) for further
details.

25

Theorem 2. Assume that there exists a constant 𝛿 (not too large) so that ||𝑓 − 𝑉𝑓||𝑁𝐾𝜓
≤

𝛿||𝑉𝑓||𝑁𝐾𝜓
. Let 𝐾 ∈ 𝐶2𝑘((Ω×Σ) × (Ω×Σ)) be a strictly positive definite kernel. Then

there exist positive constants ℎ0 and 𝐶, such that

| 𝑓(𝑡) − 𝑉𝑓(𝑡)| ≤ 𝛿 𝐶 ℎ𝑇̂𝑀
𝑘 √𝐶𝐾(𝑡̂) 𝑓

𝑡𝐴𝜓
−1 𝑓,

provided that 0 < ℎ𝑇̂𝑀 ≤ ℎ0 and 𝑓 ∈ 𝑁𝐾𝜓 where

𝐶𝐾(𝑡̂) max
|𝛽|=2𝑘

max
𝑣̂,𝑤̂∈(Ω×Σ)∩𝐵(𝑡̂,𝐶2ℎ𝑇̂𝑀

𝑘)
|𝐷2

𝛽
𝐾(𝑣̂, 𝑤̂)|,

with 𝐶2 from Theorem 14.4 (Fasshauer, 2007) p. 120, and where 𝐵(𝑡̂, 𝐶2ℎ𝑇̂𝑀
𝑘) denotes the

ball of radius 𝐶2ℎ𝑇̂𝑀
𝑘 centered at 𝑡̂.

Proof. In the varying scale setting, the coefficients 𝑐 = 𝐴𝜓
−1 𝑓 are so that

𝑉𝑓(𝑡) = 𝜅𝜓

𝑇 (𝑡)𝐴𝜓
−1 𝑓,

or, equivalently, because of the symmetry of the kernel matrix and because trivially

 𝑉𝑓(𝑡) = 𝑓
𝑇𝐴𝜓

−1 𝜅𝜓(𝑡), (1)

Because of the reproducing property, we have that

𝑓𝑇 = ((𝑓, 𝐾𝜓(∙, 𝑡1))
𝑁𝐾𝜓

, … , (𝑓, 𝐾𝜓(∙, 𝑡1𝑀))
𝑁𝐾𝜓

),

 = ((𝑓, (𝐾𝜓(∙, 𝑡1),… , 𝐾𝜓(∙, 𝑡𝑀)))
𝑁𝐾𝜓

= (𝑓, 𝜅𝜓
𝑇 (∙))

𝑁𝐾𝜓

.

By plugging this into (1), we obtain

𝑉𝑓(𝑡) = (𝑓, 𝜅𝜓
𝑇 (∙))

𝑁𝐾𝜓

𝐴𝜓
−1 𝜅𝜓(𝑡) = (𝑓, 𝜅𝜓

𝑇 (∙)𝐴𝜓
−1 𝜅𝜓(𝑡))

𝑁𝐾𝜓

.

Thus,

| 𝑓(𝑡) − 𝑉𝑓(𝑡)| ≤ ||𝑓||𝑁𝐾𝜓
||𝐾𝜓(∙, 𝑡) − 𝜅𝜓

𝑇 (∙)𝐴𝜓
−1 𝜅𝜓(𝑡)||𝑁𝐾𝜓,

 = ||𝑓||𝑁𝐾𝜓
||𝐾(∙, 𝑡̂) − 𝜅𝑇(∙)𝐴𝜓

−1 𝜅(𝑡̂)||𝑁𝐾

 = ||𝑓||𝑁𝐾𝜓
𝑃𝐾,𝑇̂𝑀(𝑡̂).

Then, as well-known, see also Th. 14.5 in (Fasshauer, 2007)

26

𝑃𝐾,𝑇̂𝑀(𝑡̂) ≤ 𝐶 ℎ𝑇̂𝑀
𝑘 √𝐶𝐾(𝑡̂) .

And finally,

| 𝑓(𝑡) − 𝑉𝑓(𝑡)| ≤ 𝛿 𝐶 ℎ𝑇̂𝑀
𝑘 √𝐶𝐾(𝑡̂) 𝑓

𝑡𝐴𝜓
−1 𝑓.

 ■

Of course, we have that ℎ𝑇𝑀
𝑘 ≤ ℎ𝑇̂𝑀

𝑘 and this a drawback for the VSK setting, indeed the error

decreases according to the fill distance, i.e. according to the number of points if they are
quasi-uniform. However, we have an improvement in terms of stability, which is meaningful
for our purposes of reducing oscillations in the solution. Indeed, also the separation distance,
which decreases according to the smallest eigenvalue of the kernel matrix, never decreases
in the VSK setting.

Appendix: Kalman Filter

To introduce the Ensemble Kalman Filter (EnKF), we need to recall the basic features of the
Extended Kalman Filter. Let us take a discrete-time nonlinear system with dynamics

𝑠𝑘+1 = 𝑓(𝑠𝑘 , 𝑢𝑘) + 𝑤𝑘 ,
and measurements

𝑙𝑘 = 𝑔(s𝑘) + 𝑣𝑘 ,

where in general, 𝑠𝑘 , 𝑤𝑘 ∈ ℝ

𝑑, 𝑢𝑘 ∈ ℝ
𝑝, 𝑙𝑘 , 𝑣𝑘 ∈ ℝ

𝑞. We assume that 𝑤𝑘 and 𝑣𝑘 are
stationary zero-mean white noise processes with covariance matrices 𝑄𝑘 and 𝑍𝑘,
respectively. Furthermore, let 𝑠0, 𝑤𝑘 and 𝑣𝑘 be uncorrelated. The scope is to construct
estimates 𝑠𝑘

𝑎 of the state 𝑠𝑘 using the measurements so that

tr(E[𝛿𝑘
𝑎(𝛿𝑘

𝑎)𝑡]),

is minimized, where 𝛿𝑘

𝑎 = 𝑠𝑘 − 𝑠𝑘
𝑎.

When the dynamics is linear, i.e.

𝑓(𝑠𝑘 , 𝑢𝑘) = 𝐵𝑘𝑠𝑘 + 𝐶𝑘𝑢𝑘 .

𝑔(𝑠𝑘) = 𝐷𝑘𝑠𝑘 .

we define the analysis state error covariance 𝑃𝑘

𝑎 ∈ ℝ𝑑×𝑑 as 𝑃𝑘
𝑎 = E[𝛿𝑘

𝑎(𝛿𝑘
𝑎)𝑇]. Furthermore,

we introduce the forecast state error covariance 𝑃𝑘
𝑓
∈ ℝ𝑑×𝑑, defined by

𝑃𝑘
𝑓
= = E [𝛿𝑘

𝑓
(𝛿𝑘

𝑓
)
𝑇
],

27

and

𝑃𝑠,𝑙𝑘
𝑓

 = E [𝛿𝑘
𝑓
(𝑙𝑘 − 𝑙𝑘

𝑓
)
𝑇
] = 𝑃𝑘

𝑓
𝐷𝑘
𝑇 , 𝑃𝑙,𝑙𝑘

𝑓
 = E [(𝑙𝑘 − 𝑙𝑘

𝑓
)(𝑙𝑘 − 𝑙𝑘

𝑓
)
𝑇
] = 𝐷𝑘𝑃𝑘

𝑓
𝐷𝑘
𝑇 + 𝑍𝑘 ,

where 𝑙𝑘
𝑓
= 𝐷𝑠𝑘

𝑓
, 𝛿𝑘

𝑓
= 𝑙𝑘 − 𝑙𝑘

𝑓
. Then, the Kalman filter iterations can be summarized in the

following two steps:

1. Analysis step:

𝐾𝑘 = 𝑃𝑠,𝑙𝑘
𝑓
(𝑃𝑙,𝑙𝑘

𝑓
)
−1
, 𝑃𝑘

𝑎 = (𝐼 − 𝐾𝑘𝐷𝑘)𝑃𝑓
𝑘, 𝑠𝑘

𝑎 = 𝑠𝑘
𝑓
+ 𝐾𝑘(𝑙𝑘 − 𝐷𝑘𝑠𝑘

𝑓
).

2. Forecast step:

𝑠𝑘+1
𝑓

= 𝐵𝑘𝑠𝑘
𝑎 + 𝐶𝑘𝑢𝑘 , 𝑃𝑘+1

𝑓
= 𝐵𝑘𝑃𝑘

𝑎𝐵𝑘
𝑇 + 𝑄𝑘 .

In case the dynamics in nonlinear, we drive our attention towards the Extended
Kalman Filter (EKF), where in the forecast step:

𝑠𝑘+1
𝑓

= 𝑓(𝑠𝑘
𝑎 , 𝑢𝑘), 𝑃𝑘+1

𝑓
= 𝐵𝑘𝑃𝑘

𝑎𝐵𝑘
𝑇 +𝑄𝑘 ,

and for the data assimilation we have:

𝑠𝑘
𝑎 = 𝑠𝑘

𝑓
+ 𝐾𝑘 (𝑙𝑘 − 𝑔(𝑠𝑘

𝑓
)) , 𝐾𝑘 = 𝑃𝑘

𝑓
𝐷𝑘
𝑇(𝐷𝑘𝑃𝑘

𝑓
𝐷𝑘
𝑇 + 𝑍𝑘)

−1
,

𝑃𝑘
𝑎 = 𝑃𝑘

𝑓
− 𝑃𝑘

𝑓
𝐷𝑘
𝑇(𝐷𝑘𝑃𝑘

𝑓
𝐷𝑘
𝑇 + 𝑍𝑘)

−1
𝐷𝑘𝑃𝑘

𝑓
,

where 𝐵𝑘 ∈ ℝ𝑑×𝑑 and 𝐷𝑘 ∈ ℝ

𝑞×𝑑 are given by

𝐵𝑘 =
𝜕𝑓(𝑠, 𝑢)

𝜕𝑠
|𝑠=𝑠𝑘

𝑎 , 𝐷𝑘 =
𝜕𝑔(𝑠)

𝜕𝑠
|𝑠=𝑠𝑘

𝑎 .

While when the dynamics is linear the Kalman filter produces optimal estimates of the state,
the EnKF for non-linear model is a suboptimal estimator, where the statistical errors are

predicted by producing an ensemble 𝑆𝑘
𝑓
= (𝑠𝑘

𝑓1 , … , 𝑆𝑘
𝑓𝑟)

𝑇
 and 𝑓𝑖 refers to the 𝑖 −th forecast

ensemble member. Then, we define the ensemble mean 𝑠̅𝑘
𝑓
∈ ℝ𝑑 as

𝑠̅𝑘
𝑓
=
1

𝑟
 ∑𝑠𝑘

𝑓𝑖

𝑟

𝑖=1

.

To approximate the state 𝑠𝑘, we first introduce the ensemble error matrix 𝑆𝑘
𝑓
∈ ℝ𝑑×𝑟

𝑆𝑘
𝑓
= [𝑡𝑘

𝑓1 − 𝑡𝑘̅
𝑓
, … , 𝑡𝑘

𝑓𝑟 − 𝑡𝑘̅
𝑓
],

and the ensemble of output error 𝑆𝑙𝑘
𝑎 ∈ ℝ𝑑×𝑟

28

𝑆𝑙𝑘
𝑎 = [𝑙𝑘

𝑓1 − 𝑙 ̅𝑘
𝑓
, … , 𝑙𝑘

𝑓𝑟 − 𝑙 ̅𝑘
𝑓
].

Taking into account the notation previously introduced we approximate 𝑃𝑘
𝑓

by 𝑃̂𝑘
𝑓

, 𝑃𝑡,𝑙𝑘
𝑓

by

𝑃̂𝑡,𝑙𝑘
𝑓

and 𝑃𝑙,𝑙𝑘
𝑓

by 𝑃̂𝑙,𝑙𝑘
𝑓

, with

𝑃̂𝑘
𝑓
=

1

𝑟 − 1
𝑆𝑘
𝑓
(𝑆𝑘

𝑓
)
𝑇
, 𝑃̂𝑡,𝑙𝑘

𝑓
=

1

𝑟 − 1
𝑆𝑘
𝑓
(𝑆𝑙𝑘

𝑓
)
𝑇
, 𝑃̂𝑙,𝑙𝑘

𝑓
=

1

𝑟 − 1
𝑆𝑙𝑘
𝑓
(𝑆𝑙𝑘

𝑓
)
𝑇
.

Therefore, the spread of the ensemble members around the mean is the error between best
estimate and actual state, while we can see the ensemble mean as the best forecast estimate
of the state. Then, for each 𝑖 = 1,… , 𝑟, we define

𝑠𝑘
𝑎𝑖 = 𝑠𝑘

𝑓𝑖 + 𝐾 (𝑙𝑘
𝑖 − 𝑔(𝑠𝑘

𝑓𝑖)),

and the perturbed observations 𝑙𝑘
𝑖 = 𝑙𝑘 + 𝑣𝑘

𝑖 , where 𝑣𝑘
𝑖 is a zero mean random variable with

normal distribution and covariance 𝑍𝑘. Then, letting

𝑠̅𝑘
𝑎 =

1

𝑟
 ∑𝑠𝑘

𝑎𝑖

𝑟

𝑖=1

.

the analysis error covariance 𝑃𝑘

𝑎 is approximated by

𝑃̂𝑘
𝑎 =

1

𝑟 − 1
𝑆𝑘
𝑎(𝑆𝑘

𝑎)𝑇 , with 𝑆𝑘
𝑎 = [𝑟𝑘

𝑎1 − 𝑟̅𝑘
𝑎, … , 𝑟𝑘

𝑎𝑟 − 𝑠̅𝑘
𝑎].

Finally, in agreement with the linear Kalman filter, we get 𝑠𝑘+1
𝑓𝑖 = 𝑓(𝑠𝑘

𝑎𝑖 , 𝑢𝑘) + 𝑤𝑘
𝑖 , where 𝑤𝑘

𝑖

are from a normal distribution with zero average and covariance 𝑄𝑘.

After introducing 𝐾̂𝑘 = 𝑃̂𝑠,𝑙𝑘
𝑓
(𝑃̂𝑙,𝑙𝑘

𝑓
)
−1

, we summarize the two main steps as follows:

1. Analysis step:

𝑠𝑘
𝑎𝑖 = 𝑠𝑘

𝑓𝑖 +𝐾𝑘 (𝑙𝑘 + 𝑣𝑘
𝑖 − 𝑔(𝑠𝑘

𝑓𝑖)).

2. Forecast step:

𝑠𝑘+1
𝑓𝑖 = 𝑓(𝑠𝑘

𝑎𝑖 + 𝑣𝑘
𝑖).

In our case, the model is constructed via POLSs or VSDKs on the reduced number of basis, as
explained before. Then, we apply the EnKF on this reduced number of points. In this way, we
are able to give reliable and efficient previsions on the future dynamics.

29

References

Aminian Shahrokhabadi, M., Neisy, A., Perracchione, E. & Polato, M., 2019. Learning with

subsampled kernel-based methods: Environmental and financial applications.

Dolomites Res. Notes Approx., pp. 12:17-27.

Bos, L. et al., 2006. Bivariate Lagrange interpolation at the Padua points: the generating

curve approach. J. Approx. Theory, pp. 143:15-25..

Bos, L., De Marchi, S. & Vianello, M., 2017. Polynomial approximation on Lissajous curves

in the d-cube. Appl. Numer. Math., pp. 116:47--56.

Bozzini, M., Lenarduzzi, L., Rossini, M. & Schaback, R., 2015. Interpolation with variably

scaled kernels. IMA J. Numer. Anal., pp. 35:199-219..

Bricio Hernandez, D., 1995. Lectures on Probability and Second Order Random Fields.

s.l.:World Scientific.

Caratheodory, C., 1911. Uber den Variabilittsbereich der Fourierschen Konstanten von

positiven harmonischen Funktionen. Rend. Circ. Mat. Palermo, pp. 32:193-217.

Cortes, C. & Vladimir, V. N., 1995. Support-vector networks. Machine Learning, pp. 20:273-

297.

De Marchi, S., Erb, W. & Marchetti, F., 2017. Spectral filtering for the reduction of the Gibbs

phenomenon for polynomial approximation methods on Lissajous curves with

applications in MPI. Dolomites Res. Notes Approx., p. 10.

De Marchi, S. et al., 2019. Shape-Driven Interpolation with Discontinuous Kernels: Error

Analysis, Edge Extraction and Applications in MPI. Preprint.

De Marchi, S., Marchetti, F. & Perracchione, E., 2019. Jumping with Variably Scaled

Discontinuous Kernels (VSDKs). Preprint.

Entekhabi at al., D., 2014. SMAP Handbook-Soil Moisture Active Passive. s.l.:JPL

Publication; Pasadena, CA, 2014.

Erb, W., 2016. Bivariate Lagrange interpolation at the node points of Lissajous. Appl. Math.

Comput. , pp. 289:409-425..

Fasshauer, G. E., 2007. Meshfree Approximations Methods with Matlab. s.l.:World Scientific,

Singapore.

Fasshauer, G. E. & McCourt, M. J., 2015. Kernel-based Approximation Methods Using

Matlab. s.l.:World Scientific, Singapore.

Fornberg, B. & Flyer, N., 2008. The Gibbs Phenomenon for radial basis functions. Potsdam,

Jerri, A.J., pp. 201-224..

Gillijns, S. et al., 2006. What is the ensemble Kalman filter and how well does it work?.

American Control Conference, pp. 1-6.

Gottlieb, D. & Shu, C. W., 1997. On the Gibbs phenomenon and its resolution. SIAM Review,

pp. 39:644-668.

Johns, C. J. & Mandel, J., 2008. A Two-Stage Ensemble Kalman Filter for Smooth Data

Assimilation. Environmental and Ecological Statistics, pp. 15: 101-110.

Jung, J. H., 2007. A note on the Gibbs phenomenon with multiquadric radial basis functions.

Appl. Num. Math., pp. 57:213-219..

Kalman, R. E., 1960. A new approach to linear filtering and prediction problems.

Transactions of the ASME – Journal of Basic Engineering. Series D., pp. 82:35-45.

Kollet, S. & Maxwell, R. M., 2008. Capturing the influence of groundwater dynamics on land

surface processes using an integrated, distributed watershed model. Water Resour.

Res., p. 44:W02402.

Matheron, G., 1965. Les variables régionalisées et leur estimation. Masson, Paris.

30

McCallum, I. et al., 2019. Developing food, water and energy nexus workflows. Int. J. Digit.

Earth, DOI: 10.1080/17538947.2019.1626921.

Oliver, M. A. & Webster, R., 2014. A tutorial guide to geostatistics: Computing and

modelling variograms and kriging. Catena , pp. 113:56-69..

Perracchione, E. et al., 2019. Modelling and processing services and tools. p. GEOEssential

Deliverable 1.3.

Piazzon, F., Sommariva, A. & Vianello, M., 2017 . Caratheodory-Tchakaloff Subsampling.

Dolomites Res. Notes Approx. , pp. 5-14.

Piazzon, F., Sommariva, A. & Vianello, M., 2017. Caratheodory-Tchakaloff Least Squares.

Sampling Theory and Applications 2017, IEEE Xplore Digital Library, p. 12017.

Shawe-Taylor, J. & Cristianini, N., 2004. Kernel Methods for Pattern Analysis. New York,

NY, USA: Cambridge University Press.

Shrestha, P. et al., 2014. A scale-consistent terrestrial systems modeling platform based on

COSMO, CLM, and ParFlow. Mon. Weather Rev. , pp. 142:3466-3483.

Sommariva, A. & Vianello, M., 2017. Nearly optimal nested sensors location for polynomial

regression on complex geometries. Sampl. Theory Signal Image Process., pp. 17:95-

101.

Wendland, H., 2005. Scattered Data Approximation. s.l.:Cambridge Monogr. Appl. Comput.

Math., vol. 17, Cambridge Univ. Press, Cambridge, 2005..

	Table of Contents
	Introduction
	Data compression
	Caratheodory-Tchakaloff subsampling

	Approximation with VSDKs
	Kernel-based methods
	Variably scaled discontinuous kernels

	Time prediction
	Kernel-based methods
	Support vector regression

	Simulations for compression algorithms
	Test with Padova points
	Test with Caratheodory-Tchakaloff

	Simulations for time predictions
	Conclusions
	Appendix: Error bounds
	Appendix: Kalman Filter
	References

