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Introduction 
 

The objective of this report is to provide a survey of the mathematical foundation of the 
efficient and robust reduced order modelling based on compression/approximation methods. 
This task aims at delivering value-added services to Essential Variables (EVs) within the 
context of the GeoEssential project (McCallum, et al., 2019). The realm of the EVs of interest 
encompasses a large number of Earth observation data types, especially 2D spaceborne 
measurements, that necessarily calls for a drastic synthesis. To this aim we here investigate 
the use of compression techniques based on least squares Caratheodory-Tchakaloff 
subsampling and discontinuous kernel-based interpolation. Once the data is compressed, we 
are then able to apply useful machine learning tools for forecasting the dynamics of the EVs. 
 

The huge amount of available satellite data needs model reduction schemes for delivering 
the sought services such as, e.g., short term real-time predictions via machine learning 
schemes. Effective synthesis can be achieved only via suitable reduced order models that 
must be at the same time efficient and accurate to ensure meaningful analysis of the EVs of 
interest. Novel theories arising in the field of numerical analysis, and more specifically 
approximation theory, provide an opportunity to accomplish these relevant tasks. This 
document intends to demonstrate the effectiveness of this combination by developing the 
necessary theoretical foundation of approximation algorithms and shows, via simple 
examples, the applicability of these modelling tools for the purposes of the GEOEssential 
project. 
  
 More specifically, we focus on two aspects of data-based modelling: 

• Compression (refer to Section Data compression): reduce the dimensions for satellite 
data via either Caratheodory-Tchakaloff or Padova points subsampling (Bos, et al., 
2006) (Bos, et al., 2017) (Piazzon, et al., 2017) (Piazzon, et al., 2017 ).  

• Reconstruction (refer to Section Approximation with VDSKS): accurately approximate 
the data with the reduced number of points via either polynomial least squares or 
discontinuous kernel-based methods (Bozzini, et al., 2015) (De Marchi, et al., 2017) 
(De Marchi, et al., 2019). 

These data based reduced models are used as inputs for machine learning schemes. The latter 
allow us to predict the time evolution of the considered EVs (refer to Section Time prediction). 
This results in an accurate and truly efficient tool for inferring on the dynamics of the 
quantities of interest. Precisely, in the following we focus on Support Vector Regression (SVR) 
(Shawe-Taylor & Cristianini, 2004) that takes as training examples the reduced data models. 
Comparisons with the well-known Ensamble Kalman Filter (EnKF), briefly reviewed in the 
Appendix, are also carried out. 
  
After providing a theoretical framework, we test in Sections Simulations for compression 
algorithms-Simulations for time predictions and further discuss in Section Conclusions the 
proposed techniques for satellite data consisting of the Level 2 soil moisture product obtained 
by the NASA Soil Moisture Active Passive (SMAP) satellite (Entekhabi at al., 2014) and 
simulated data obtained via the TERRestrial SYStem Modelling Platform (TerrSysMP) (Kollet 
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& Maxwell, 2008) (Shrestha, et al., 2014). Such experiments were carried out with a Python 
software which is freely available for the scientific community at 
https://github.com/emmaA89/vlabprediction.  

Data compression 
 
The schemes we present in this section represent the background for efficiently dealing with 
huge data (Perracchione, et al., 2019). To introduce them, we need some mathematical 
background recalled in what follows. 
 

Caratheodory-Tchakaloff subsampling 
 
Tchakaloff's theorem is the basis for quadrature theory. It states that for every compactly 
supported measure there exists a positive algebraic quadrature formula with a cardinality 
that do not exceed the dimension of the exactness polynomial space. This specifically allows 
us to compress data, meaning that we are able to extract a reduced number of points such 
that the approximation error in reconstructing the original underlying function via Polynomial 
Least Squares (POLSs) can be bounded and controlled. Such a strategy is also independent of 
the problem geometry and thus enables us to consider specific polygonal regions.  
 
To explain the algorithm we first need to recall the following theorem (Caratheodory, 1911); 
see also (Piazzon, et al., 2017) (Piazzon, et al., 2017 ) (Sommariva & Vianello, 2017). 
 
Theorem 1. Let 𝜇 be a multivariate discrete measure supported at a finite set 𝑋𝑁 =
{𝑥𝑖 , 𝑖 = 1,… , 𝑁} ⊆ Ω, Ω ∈ ℝ𝑑, with correspondent positive weights (masses) ΛN = {𝜆𝑖 , 𝑖 =
1,… ,𝑁}  and let 𝑆 =  span(𝜙1. . . , 𝜙𝐿) a finite dimensional space of 𝑑-variate functions 
defined on Ω ⊇  𝑋𝑁, with 𝑃 = dim(𝑆|𝑋𝑁) ≤ 𝐿. Then, there exists a quadrature formula with 

nodes 𝑇𝑀  = {𝒕𝑖 , 𝑖 = 1,… ,𝑀} ⊆  𝑋𝑁 and positive weights 𝑊𝑀  = {𝑤𝑖 , 𝑖 = 1,… ,𝑀}, with 
𝑀 ≤  𝑃, such that  
 

𝐼𝜇(𝑓) =  ∑𝜆𝑖𝑓(𝑥𝑖)

𝑁

𝑖=1

 = ∑𝑤𝑖𝑓(𝑡𝑖)

𝑀

𝑖=1

,         ∀𝑓 ∈ 𝑆|𝑋𝑁 . 

 
In what follows we consider 𝑆 =  𝑃𝑝

𝑑(Ω),  i.e., the subspace of 𝑑-variate real polynomials 

of total degree not exceeding 𝑝. If Ω is an algebraic variety of ℝ𝑑 , then  
 

dim(𝑆|𝑋𝑁) ≤ dim(𝑆|𝑋𝑁) <𝐿 = dim (𝑃𝑝
𝑑(Ω)) . 

 
In other words, such theorem shows that the original sampling set can be replaced by a 
smaller one. Moreover in (Piazzon, et al., 2017), the authors prove that this can be done 
keeping practically invariant the least squares approximation estimates. To solve the problem 
outlined in Theorem 1, i.e. the one of computing weights and nodes, one can use quadratic 
programming, namely the classical Lawson-Hanson active set method for NonNegative Least 
Squares (NNLS) or also Linear Programming (LP) via the classical simplex method.  

https://github.com/emmaA89/vlabprediction
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Indeed, restricting our search to polynomials of degree 𝑝, we need to solve the following 
quadratic minimum problem 
 

{
min||𝑉𝑇𝑢 − 𝑏||

2
,

𝑢 ≥ 0,
 

 
where 𝑉 is the classical Vandermonde matrix and 𝑏 = 𝑉𝑇𝜆. Then, the nonvanishing 
components of such a solution give the weights 𝑊𝑀  = {𝑤𝑖 , 𝑖 = 1,… ,𝑀} and the indexes of 
the nodes 𝑇𝑀  = {𝑡𝑖 , 𝑖 = 1,… ,𝑀}.  
  
For the linear programming approach, we instead have to find 
 

{
min 𝑠𝑇𝑢,

𝑉𝑇𝑢 = 𝑏,
𝑢 ≥ 0,

 

 
where the constraints identify a polytope (the feasible region) and the vector 𝑠 is chosen to 
be linearly independent from the rows of 𝑉𝑇.  
 
This method enables us to consider only a few points to reconstruct a given function 𝑓. The 
so-constructed algorithm has already been used in (Piazzon, et al., 2017) and we refer to as 
CATCH scheme.  Precisely, let us consider two subsets: 𝑋𝑁 = {𝑥𝑖 , 𝑖 = 1,… , 𝑁} ⊆ Ω, Ω ⊂ ℝ

𝑑, 
the set of distinct data points (or data sites or nodes), arbitrarily distributed on Ω  and 𝐹𝑁 =
{𝑓𝑖 , 𝑖 = 1,… , 𝑁} ⊆ ℝ𝑑, the associated set of data values (or measurements  or function 
values). We model the function 𝑓 by considering 𝑀 points extracted via Theorem 1 and then 
we apply some approximation schemes, such as in this case, POLSs.  
 
Remark 1. Note that, for the spatial data we can think of 𝑋𝑁 as the set of pixels with the 
associated values 𝐹𝑁. Then, we construct the reduced model and by evaluating it, we can 
reconstruct the image at each pixel via the approximated values, namely 𝑦𝑘 , 𝑘 = 1,… ,𝑁. 
 
We also stress the fact that the data might be characterized by steep gradients or 
discontinuities and thus ad hoc meshfree methods might be of interest. Therefore, as a 
second reconstruction scheme after the compression we propose kernel-based methods 
constructed via (possibly) discontinuous bases as an alternative to POLSs. This approach is 
outlined in the next section and enables us to partially overcome the Gibbs phenomenon; 
refer to (Fornberg & Flyer, 2008) (Gottlieb & Shu, 1997) (Jung, 2007) for a general overview.  
 
As a final remark on this section, we point out that if there are no special needs of focusing 
on a particular region of interest, but the whole (square or rectangular) image needs to be 
compressed and reconstructed, then a good choice for reducing samples is the one of 
considering the so-called Padova points; refer e.g. to (Bos, et al., 2006). Indeed, since on those 
nodes the Lebesgue constant grows logarithmically with respect to the number of nodes, the 
polynomial approximation turns out to be stable. 
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Padova points subsampling   
 

The Padova points belong to four families which only differ because of the position of the 
Padova points on two consecutive vertices of the square [−1,1]2. In particular, for each family 
of Padova points, two nodes lie on consecutive vertices of the square [−1,1]2, 2𝑝 − 1 points 
lie on the edges of the square, and the remaining points lie on the self-intersections of a 
generating curve inside the square.  
 
The one we consider here are so generated: letting 𝑝 a natural number, we define  

𝑇𝑀 =  { 𝜑 (
𝑘 𝜋

𝑝(𝑝 + 1)
 ) , 𝑘 = 0,… , 𝑝(𝑝 + 1)},  

where 

𝑀 = 
(𝑝 + 1)(𝑝 + 2)

2
, 

and 

𝜑(𝑡) = ( −cos((𝑝 + 1)𝑡),−cos(𝑝𝑡)) ,      𝑡 ∈  [0, 𝜋]. 

 
Note that 𝜑 is a closed parametric curve in the interval [0,2𝜋], and is a special case of Lissajous 
curves; see (Bos, et al., 2017) (De Marchi, et al., 2017) (Erb, 2016). 
 

Approximation with VSDKs 
 
The second reconstruction scheme we propose is based on interpolating the function values 
via kernel-based methods briefly reviewed below and then extended to work with 
discontinuous bases. 
 

Kernel-based methods 
 
After compressing the image as explained in the previous section, we want to find an 
interpolating function 𝑃𝑓: Ω →  ℝ such that:  

  
𝑃𝑓( 𝑡𝑖) =  𝑓𝑖 ,      𝑖 ∈  {1, … ,𝑀}.   

Since the extracted nodes are scattered, meshfree or meshless methods turn out to be 
particularly suitable. Indeed, they are easy to implement in any dimension.  
 
In RBF interpolation, we suppose to have a univariate function 𝜙: [0,∞) → ℝ that provides, 
for 𝑡, 𝑧 ∈ Ω, the real symmetric strictly positive definite kernel  
 

𝐾(𝑡, 𝑧)  = 𝜙 ( ||𝑡 − 𝑧||
2
). 

 
The interpolating function 𝑃𝑓 on the reduced nodes can be written as 
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𝑃𝑓(𝑡) =  ∑𝑐𝑘𝐾(𝑡, 𝑡𝑘),      𝑡 ∈ Ω

𝑀

𝑘=1

 

 
To find the coefficients, we simply have to solve the linear system of equations (Fasshauer, 
2007) (Fasshauer, 2007) 

𝐴𝑐 = 𝑓, 
 
where 𝑐 =  (𝑐1, … , 𝑐𝑀)

𝑇, 𝑐 =  (𝑓1, … , 𝑓𝑀)
𝑇 , and  

 
(𝐴)𝑖𝑘 =  𝐾(𝑡𝑖 , 𝑡𝑘),    𝑖, 𝑘 = 1,… ,𝑀. 

 
Since we suppose 𝐾 symmetric and strictly positive definite, this system has exactly one 
solution. 
 

Variably scaled discontinuous kernels 
 
We consider now a scenario in which piecewise continuous functions are approximated with 
discontinuous kernels. Note that this framework is the one that characterizes satellite data 
over land surfaces, where no measurements are over the oceans and/or there are regions 
masked out due to lakes, built-up areas or huge forests.  We consider the following general 
setting (refer to (De Marchi, et al., 2019)):  
 
Assumption 1.  We assume that: 

1. The bounded set Ω ⊂ ℝ𝑑   is the union of 𝑛 pairwise disjoint sets Ω𝑖, 𝑖 ∈  {1,… , 𝑛}. 
2. The subsets Ω𝑖 satisfy an interior cone condition and have a Lipschitz boundary.  
3.  We define an auxiliary function 𝜓:Ω →Σ, Σ ⊂  ℝ so that it is constant on the 

subsets Ω𝑖, i.e., 𝜓(𝑡) = 𝛼𝑖 ,  for  𝑡 ∈Ω𝑖. If, for 𝑖 ≠  𝑗, Ω𝑖
̅̅ ̅̅ ∩  Ω𝑖

̅̅ ̅̅ ≠ ∅ holds true, then 
also 𝛼𝑖  ≠ 𝛼𝑗. In other words, the piecewise constant function 𝜓 is discontinuous at 

the boundaries of Ω𝑖.  

The function 𝜓 is used to mimic the discontinuities of the original function/image and thus,  
we consider now the following variably scaled discontinuous kernels (VSDKs) see (De Marchi, 
et al., 2019) and also refer to (Bozzini, et al., 2015) for the general definition of VSKs. 
 
Definition 1.  Assume that all prerequisites in Assumption 1 are given and let 𝐾 be a 
continuous strictly positive definite kernel on Ω×Σ ⊂  ℝ𝑑+1 defined by a radial basis 
function 𝜙.  We define a VSDK 𝐾𝜓 on Ω as 

 

 𝐾𝜓(𝑡, 𝑧):=  𝐾 ((𝑡, 𝜓(𝑡)), (𝑧, 𝜓(𝑧))) = 𝜙 (√||t − z||2
2 + (𝜓(𝑡) − 𝜓(𝑧))

2
), 

 
for 𝑡, 𝑧 ∈ Ω. 
 
We now use the following notation 𝑡̂ = (𝑡, 𝜓(𝑡)) and we define the on intepolant  Ω × Σ, as 
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𝑃𝑓(𝑡̂) = ∑𝑐𝑘𝐾(𝑡̂, 𝑡̂𝑘)

𝑀

𝑘=1

. 

 
Then the VSDK interpolant 𝑉𝑓 on Ω is given by 

 

𝑉𝑓(𝑡) = 𝑃𝑓(𝑡̂) = ∑𝑐𝑘𝐾𝜓(𝑡, 𝑡𝑘)

𝑀

𝑘=1

,      𝑡 ∈ Ω. 

 
The computation of the VSDK interpolant turns out to be trivial. Indeed, for the given node  

set 𝑇𝑀 ⊂ Ω, we consider the associated node set 𝑇̂𝑀 = {𝑡̂1, … , 𝑡̂𝑀} and the coefficients 
𝑐1, … , 𝑐𝑀 of the interpolant 𝑉𝑓(𝑡) are computed by solving 

 
 

𝐴𝜓𝑐 = 𝑓, 

 
where  
 

𝐴𝜓 = (
𝐾(𝑡̂1, 𝑡̂1) ⋯ 𝐾(𝑡̂1, 𝑡̂𝑀)

⋮ ⋱ ⋮
𝐾(𝑡̂𝑀 , 𝑡̂1) ⋯ 𝐾(𝑡̂𝑀 , 𝑡̂𝑀)

). 

 
For details about the error bounds please refer to the Appendix.   
As a final tool, we will also present SVR. Indeed, the reduced models for the images enable us 
to give predictions in time which turn out to be accurate and efficient. 

Time prediction 
 
Machine learning (see (Shawe-Taylor & Cristianini, 2004) for a general overview) is a field of 
computer science which aims to discover patterns from data. In other words, its goal consists 
in understanding which relation links inputs and outputs. In particular, SVR can be used in our 
context in order to give reliable predictions on the future dynamics. We thus suppose to have 
a set of 𝑇 grids, with same pixels and an underlying function which varies in time,  i.e. a set of 

pixels 𝑋𝑁 = {𝑥𝑖 , 𝑖 = 1, … , 𝑁} ⊆  Ω and the function values at each time step, i.e. 𝐹𝑁
𝑗
=

{𝑓𝑖
𝑗
, 𝑖 = 1, … , 𝑁} ⊆ ℝ, 𝑗 =  1,… , 𝑇. To infer on the dynamics of the process, one could apply, 

e.g. regression tools, pixel by pixel. This would be truly expensive and therefore, we propose 
to study the time evolution only for the reduced set of points selected via Padova of 
Caratheodory-Tchakaloff subsampling. Then, once we get the estimations for the time step 

𝑇 + 1, i.e. 𝑦𝑖̂
𝑇+1, 𝑖 = 1, … ,𝑀, we reconstruct the predicted image on the whole domain by 

means of VSDKs and we produce an estimation of the image evolution, i.e. we produce the 

set 𝑦𝑖
𝑇+1, 𝑖 = 1, … , 𝑁, which approximate the true solution 𝑓𝑖

𝑇+1. About reduced models for 
machine learning we also refer the reader to (Aminian Shahrokhabadi, et al., 2019). 
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To point out how SVR works, we focus on the 𝑖-th point, i.e. the index 𝑖 is fixed if not elsewhere 

noted.  Given 𝑇𝑇
𝑖  =  {𝑡𝑖

𝑗
, 𝑗 =  1,… , 𝑇}, and 𝐹𝑇

𝑖 = {𝑓𝑖
𝑗
, 𝑗 = 1, … , 𝑇}, we formally define the 

training set 𝐷𝑖 = 𝑇𝑇
𝑖  × 𝐹𝑇

𝑖 , in which we assume there exists a function (i.e., relation) such 
that  
 

𝑔𝑖(𝑡𝑖
𝑗
) ≈  𝑓𝑖

𝑗
, 

 

for (𝑡𝑖
𝑗
, 𝑓𝑖

𝑗
) ∈  𝐷𝑖 . Again, a learning algorithm tries to find a function, i.e. a mode, that 

approximates the unknown function 𝑔𝑖  as tightly as possible. 
 
To this aim, we consider kernel-based methods which are one of the most used machine 
learning approaches. They take advantage of the so-called kernel trick which allows to 
implicitly compute vector similarities (defined in terms of dot-product). 
 

Kernel-based methods 
 
Focusing on strictly positive and symmetric kernels, we know that 𝐾(𝑡, 𝑧) admits the following 
expansion 
 

𝐾(𝑡, 𝑧) = ΦT(𝑡)Φ(𝑧), 
 
where Φ:Ω →  𝐺 is a mapping function from Ω to the embedding feature space 𝐺 (Shawe-
Taylor & Cristianini, 2004). Kernel machines are a particular family of machine learning 
methods that try to minimize the following problem: 
 

argmin
𝑔𝑖∈𝐺

𝐿(𝑔𝑖(𝑡𝑖
1),… , 𝑔𝑖(𝑡𝑖

𝑇)) + Λ||𝑔𝑖||𝐺 , 

 
where 𝐿 is the so-called loss function associated to the empirical error, Λ is a trade-off 
parameter also known as regularization parameter. We assume that the solution of such kind 
of problem can be expressed as 
 

𝑔𝑖(𝑡) =  𝑤𝑖
𝑇Φ(𝑡) =  ∑𝑐𝑗𝐾(𝑡𝑖

𝑗

𝑇

𝑗=1

, 𝑡), 

 
which means that 𝑔𝑖  can be expressed as a hyperplane in a feature space defined by the 
function Φ, and hence it can be seen as a weighted sum of kernels between the input vector 
and the vectors in the training set. The intuition behind this result is that, by using the 
embedding function Φ,  the data are projected into a (usually higher dimensional) space in 
which the hypothesis we are looking for becomes a linear function that can be expressed in 
terms of training examples. 
 
We now focus on support vector machine, which is the most famous kernel method and 
represents the state of the art performances in many learning tasks. 
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Support vector regression 
 
Support vector machine is usually used for classification tasks, but it can be easily adapted to 
regression (SVR) (Cortes & Vladimir, 1995). The SVR problem in its primal form is given by 
 

min
𝑤𝑖,𝑏𝑖,𝜉𝑖,𝜉𝑖

∗

1

2
||𝑤𝑖||2

2 + 𝐶 ∑𝜉𝑖𝑗 + 𝜉𝑖𝑗
∗

𝑇

𝑗=1

, 

subject to  
 

𝑓𝑖
𝑗
−𝑤𝑖

𝑇Φ(𝑡𝑖
𝑗
) − 𝑏 ≤ 𝜖 + 𝜉𝑖𝑗 , 

−𝑓𝑖
𝑗
+𝑤𝑖

𝑇Φ(𝑡𝑖
𝑗
) + 𝑏 ≤ 𝜖 + 𝜉𝑖𝑗

∗ , 

𝜉𝑖𝑗
∗ , 𝜉𝑖𝑗 ≥ 0. 

 
 
for 𝑗 = 1, … , 𝑇, where the objective function aims to minimize the squared norm of the 
hypothesis in order to get a smooth function, while maintaining the number of errors as low 
as possible. 𝐶 represents the trade-off hyper-parameter. The hyper-parameter 𝜖 indicates the 
width of the tube in which the examples can fall into without being counted as errors. 
 
This problem is usually solved in its dual form defined as 
 

min
𝑐𝑖,𝑐𝑖

∗

1

2
∑ (𝑐𝑖,𝑘 − 𝑐𝑖,𝑘

∗ )(𝑐𝑗,𝑘 − 𝑐𝑗,𝑘
∗ )

𝑇

𝑘,𝑗=1

𝐾(𝑡𝑖
𝑘 , 𝑡𝑖

𝑗
) + ∑(𝑐𝑖,𝑘 + 𝑐𝑖,𝑘

∗ )𝜖

𝑇

𝑘=1

 −  ∑ (𝑐𝑖,𝑘 − 𝑐𝑖,𝑗
∗ )𝑓𝑖

𝑘

𝑇

𝑘,𝑗=1

,  

 
and  

∑(𝑐𝑖,𝑘 + 𝑐𝑖,𝑘
∗ ) = 0

𝑇

𝑘=1

, 

𝑐𝑖,𝑘 , 𝑐𝑖,𝑘
∗ ∈ [0, 𝐶]. 

 
Then, the final regression model reads as follows: 
 

𝑔𝑖(𝑡) = ∑ (𝑐𝑖,𝑗 − 𝑐𝑖,𝑗 
∗ )

𝑗∈𝑆𝑉 

𝐾(𝑡, 𝑡𝑖
𝑗
) + 𝑏, 

 

where SV is the set of training examples 𝑡𝑖
𝑗
 such that the corresponding 𝑐𝑖,𝑗  or 𝑐𝑖,𝑗 

∗  are not 

both zero, and they are called support vectors.   
 
Concerning the implementation, we make use of the Python package scikit-learn freely 
available on the Github repository at https://github.com/scikit-learn/scikit-learn. 
 
As a comparison with SVR, in the experiments we also consider the so-called Kalman Filter. 
Once we construct the reduced model, in the context of data assimilation, the aim is to 
incorporate new observations and predictions into the model state of a numerical model. To 

https://github.com/scikit-learn/scikit-learn


  

11  

this aim, the well-known scheme based on the so-called Ensemble Kalman Filter (EnKF) is 
usually employed. For more details on that, we refer the reader to the Appendix and e.g. to 
(Gillijns, et al., 2006) (Johns & Mandel, 2008) (Kalman, 1960). In the following test it is 
implemented via the Python package  filterpy freely available on the Github repository at 
https://github.com/rlabbe/filterpy. Refer also to the Appendix.  
 

Simulations for compression algorithms 
 
In the numerical experiments that follow, we consider two test data sets representing the soil 
moisture over Europe. Soil moisture is a key variable for hydrology which turns out to be 
meaningful for many applications, such as modeling and forecast of climate variability and 
water resources management. Moreover, soil moisture is now recognized as an essential 
variable (EV), playing an important role in addressing the UN’s SDGs, either directly or 
indirectly. For instance, soil moisture content may influence access to available water 
(targeting SDG no. 6), control land-atmosphere feedback and interactions (targeting SDG no. 
13), affect land surface properties and ecosystem functioning (targeting SDG no. 15), and crop 
biomass and yield productions (targeting SDG no. 2). Such links may even be of great 
importance in arid and semi-arid regions facing water shortage and intensive droughts. 
 
The first grid we consider is plotted in Figure 1 (left) and consists of soil moisture data taken 
by NASA Soil Moisture Active Passive (SMAP) mission in April 2015 (Entekhabi at al., 2014). 
The space segment has been launched on January 31, 2015, and the mission is designed to 
principally measure soil moisture globally. In what follows we might refer to such grid as raw 
data image.  The second test grid is plotted in Figure 1  (right) and it consists of simulated soil 
moisture data obtained via the TERRestrial SYStem Modelling Platform (TerrSysMP) that was 
developed to simulate the interaction between lateral flow processes in river basins with the 
lower atmospheric boundary layer (Kollet & Maxwell, 2008) (Shrestha, et al., 2014). The 
Centre for High-Performance Scientific Computing in terrestrial systems (HPSC TerrSys) is 
operating TerrSysMP in a forecasting setup over North Rhine-Westphalia and Europe. The 
model results are made available for the scientific community daily as videos via the YouTube 
Channel of HPSC TerrSys 
https://www.youtube.com/channel/UCGio3ckQwasR5a_kJo1GdOw.   
 
Starting with the two grids of soil moisture reported in Figure 1 we extract two sub-regions 
used in our simulations and plotted in Figure 2. After compression, the reconstruction scheme 
is carried out in two ways: 1) POLSs and 2) VSDKs. The second method turns out to be 
meaningful when discontinuities appear, indeed it reduces the Gibbs effect. 
 
The two approximation methods are compared in terms of Compress Ratio (CR) and Mean 
Square Error (MSE).  
 

MSE = 
1

𝑁
∑(𝑓𝑖 − 𝑦𝑖)

2.

𝑁

𝑖=1

 

 

https://github.com/rlabbe/filterpy
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Letting 𝑆 the number of coefficients that need to be computed for POLSs and VSDKs, the CR 
is given by  

CR =  
𝑁

𝑆
, 

 
where for VSDK interpolation 𝑆 = 𝑀, while for the POLSs scheme it is linked to the polynomial 
degree denoted by 𝑝.   
Furthermore, the accuracy of the fit is also compared in terms of the Peak Signal to Noise 
Ratio (PSNR) 

PSNR = 20 log10 (
255

MSE
) . 

 
To validate our models, we also compute the so-called variograms (Bricio Hernandez, 1995). 
We use them for two scopes: 1) check that the spatial correlation of the extracted data via 
subsampling is comparable to the one of the original image, 2) check that the spatial 
correlation of the reconstructed image is comparable to the one of the original image.  
 
To briefly review the variogram theory, let us represent a given random process by the model 
(Oliver & Webster, 2014) 
 

𝑍(𝑡) = 𝜇 + 𝜖(𝑡) 
 
where 𝜇 is the mean of the process, 𝑡 ∈  Ω  and 𝜖(𝑡) is a random quantity with zero mean 
and a covariance, COV(𝑙), given by 
 

COV(𝑙) = E[ϵ(t)ϵ(t + l)]. 
 
In these equations 𝑙 is the separation between samples in both distance and direction and E 
denotes the expectation. If the mean is not constant, we make the following assumption: 
 

E[𝑍(𝑡) − 𝑍(𝑡 + 𝑙)] = 0 
 
Then, the covariance is replaced by the semivariance. In this way, we are able to define the 
so-called variogram whose formula is given by 
 

𝛾(𝑙) =  
1

2
VAR[𝑍(𝑡) − 𝑍(𝑡 + 𝑙)].  

 
Concerning the experimental variogram, i.e. the one computed via the samples, we use the 
method of moments (Matheron, 1965) for which 
 

𝛾̂(𝑙) =
1

2𝑚(𝑙)
∑[𝑓(𝑡𝑖) − 𝑓(𝑡𝑖 + 𝑙)]

2,

𝑚(𝑙)

𝑖=1

 

 
where 𝑚(𝑙) is the number of paired comparisons at lag 𝑙. By computing such quantity, we are 
able to check if the spacial correlation is preserved in the approximation process. Usually, 
aside the graphical results one tries to fit the empirical variograms with known models. Here 
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we consider one of the most appreciated models in geostatistics, i.e. the spherical fit. Thus, 
letting 𝑙1 = ||𝑙||2, we define 
 

𝛾̂(𝑙1) =

{
 
 

 
 α0 + α ( 

3𝑙1
2𝑟

−
𝑙1
3

2𝑟3
) ,  0 <  l1 ≤  r,

α0 + α,     l1  >  r,
0,   𝑙1 = 0,

 

 
where the parameters to fit are α0, the nugget variance, α the spatially correlated variance, 
and 𝑟 the range, which is the limit of spatial correlation. Moreover, the quantity α0 + α 
estimates the variance of the random process and is known as the sill. We also remark that 
the nugget variance represents the uncorrelated variation at the scale of sampling (Oliver & 
Webster, 2014). 

 

 
Figure 1: Left: Image taken by SMAP satellite on April 2015. The image size is 1624 ×  3856. Right: Image 
obtained via the terrestrial system modelling platform (TerrSysMP)  satellite on May 2018. The image size 

is 436 ×  424. 

 

Test with Padova points 
 
At first, we test our technique on these soil moisture data sampled over the whole domain Ω, 
i.e. on rectangular grids, and then we focus on particular polygonal areas.  
 
Being the domain a rectangle we reduce the grid size taking a few samples at the Padova 
points. An example of their distribution is plotted in Figure 3. The polynomial 
interpolation/approximation over those points takes advantage of a very slow growth of the 
Lebesgue constant. Further, they cluster at the boundary where usually the error is higher. 
For both images, we fist compress the data via Padova points and then we reconstruct the 
image for testing the accuracy of our procedure.  
 
After compressing the two images (raw and simulated data, respectively composed by 𝑁 =
27504 and 𝑁 = 29998 pixels) via the Padova points, the two reconstruction schemes are 
compared in terms of CR and MSE. The results, obtained by varying the polynomial degree 
and consequently 𝑀, are reported in Tables 1 and 2 for respectively raw and simulated 
images. The CPU times for the raw data needed for the reconstruction algorithms are also 
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shown. We omit further tests in this direction, indeed similar results hold for all the 
considered tests. 
 

 

 

Figure 2: Left: the selected image for tests with SMAP satellite; its size is 𝑁 =  191 ×  144. Right: the 
selected image for tests with TerrSysMP; its size is 𝑁 =  106 ×  283. 

 

 

 

Figure 3: Examples of extracted Padova points. 
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Method  𝒑 𝑴 ⌊𝑪𝑹⌋      PSNR      CPU     MSE 

POLSs 20 --  119 66.9 1.07 1.29E-02 
VSDKs -- 231 199 71.0 0.98 1.29E-02 

POLSs 30 -- 55 67.8 4.52 1.05E-02 

VSDKs -- 496 55 72.9 1.52 3.26E-03 

POLSs 40 -- 31 68.7 18.7 8.66E-03 

VSDKs -- 861 31 73.2 3.14 3.04E-03 

POLSs 50 -- 20 75.6 5.02 1.75E-03 
VSDKs -- 1326 20 69.8 157 6.72E-03 

POLSs 60 -- 14 77.0 7.45 1.26E-03 

VSDKs -- 1891 14 70.3 379 6.00E-03 

POLSs 70 -- 10 77.9 10.6 1.04E-03 

VSDKs -- 2556 10 69.3  57.3 7.57E-03 

POLSs 80 -- 8 70.3  904   5.49E-03 
VSDKs -- 3321 8 78.8   15.5  8.52E-04 

POLSs 90 -- 6 71.0  2156  5.10E-03 

VSDKs -- 4186 6 79.5  19.8  7.27E-04 

 

Table 1: Results for the compression algorithms used for the raw data image. 

  
 

 Method  𝒑 𝑴 ⌊𝑪𝑹⌋      PSNR     MSE 
POLSs 20 --  129   67.4   1.17E-02 

VSDKs -- 231 129   85.2   1.92E-04 

POLSs 30 -- 60   69.0   8.10E-03 

VSDKs -- 496 60   85.4   1.86E-04 

POLSs 40 -- 34   69.8   6.68E-03 

VSDKs -- 861 34   85.6   1.76E-04 
POLSs 50 -- 22   70.5   5.70E-03 

VSDKs -- 1326 22   86.2   1.53E-04 

POLSs 60 -- 5   71.0   5.06E-03 

VSDKs -- 1891 15   86.7   1.37E-04 

POLSs 70 -- 11   71.4    4.66E-03 

VSDKs -- 2556 11   87.0   1.28E-04 

POLSs 80 -- 9   71.7    4.31E-03 

VSDKs -- 3321 9   87.1    1.23E-04 

POLSs 90 -- 6   72.0   4.08E-03 

VSDKs -- 4186 6   87.4   1.17E-04 

 
Table 2: Results for the compression algorithms used for the simulated data image.  

 

As evident from Tables 1 and 2, the compression via Padova points is particularly effective. 
Nevertheless, the reconstruction via POLSs suffers from the Gibbs phenomenon.  Kernels in a 
varying scale setting show their robustness in dealing with the Gibbs phenomenon.  
To have graphical feedback, we report several reconstruction results in Figures 4 and 5. We 
can graphically note that  when 𝑀 grows while VSDKs are truly performing, the POLSs scheme 
suffers from the Gibbs phenomenon. 
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Figure 4: Reconstruction of the raw data image via POLSs and VSDKs interpolation (left and right, 
respectively) for 𝑝 = 30 and 90 (top and bottom respectively). 

Finally, in Figure 6 we show the empirical variograms for the raw data image. They are 
computed via the Python package PyKrige freely available on the Github repository at 
https://github.com/bsmurphy/PyKrige. We should note from the two frames on the top of 
Figure 6 that the empirical variograms computed on a few extracted Padova points (with the 
known values at those points) are similar to the one computed for the original image. This is 
a confirmation about the fact that approximating on Padova points turns out to be reliable. 
However, the variogram on the extracted data shows a moderate hole-effect. This is due to 
the particular distribution of Padova points that cluster at the boundary. Nevertheless, since 
the error at the boundary is usually higher, this is certainly not a drawback. Concerning the 
other variograms, they are computed on the reconstructed grids in the same framework of 
Figures 4. As expected, while VSDKs maintain the spatial correlation, POLSs show their 
difficulties.  
 
 

https://github.com/bsmurphy/PyKrige
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Figure 5: Reconstruction of the simulated data image via POLSs and VSDKs interpolation (left and right, 

respectively) for 𝑝 = 30 and 90 (top and bottom respectively). 

 

 
 

Figure 6: This figure refers to the raw data image. From left to right, top to bottom. 1) The variogram of 
the original image. 2) The variogram on a few extracted Padova points for 𝑝 = 90 (with the known values 

at those points). 3) The variogram of the reconstructed image with POLSs (𝑝 = 90). 4) The variogram of 
the reconstructed image with VSDKs (𝑝 = 90). 
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Test with Caratheodory-Tchakaloff 
 
Since it might be of interest focusing the attention on particular areas and/or (partially) 
removing points lying on the sea or on masked regions, extracting points on polygons is 
meaningful. The reduced nodes are thus extracted via the CATCH scheme. Tests are carried 
out via the images plotted in Figure 7. 
 

 

  
 

Figure 7: Top Left: the selected polygonal image for tests with SMAP satellite; its size is 𝑁 =  10880 
Right: the selected polygonal image for tests with TerrSysMP; its size is 𝑁 =  6440. Examples of 

Caratheodory-Tchakaloff points are plotted in red. Bottom: zoom of the two figures. 

The results of the compression and reconstruction via both POLSs and VSDKs are reported in 
Tables 3 and 4. We note that in this case the two methods apparently behave similarly. 
However, VSDKs are not completely suitable for the simulated data type. In this case, being 
the field to reconstruct smooth, POLSs outperform VSDKs. 
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 Method  𝒑 𝑴 ⌊𝑪𝑹⌋     MSE 

POLSs 10   --   164   1.48E-02 

VSDKs --   66   164    8.03E-03 

POLSs 15   --   80   1.27E-02 

VSDKs --   136   80     4.44E-03 

POLSs 20   --   47   1.08E-02 
VSDKs --   231   47    4.59E-03 

POLSs 25   --   30    9.60E-03 

VSDKs --   351   30    2.93E-03 

POLSs 30   --   21   8.96E-03 

VSDKs --   496   21   2.41E-03 

POLSs 35   --   16    7.99E-03 
VSDKs --   666   16    1.35E-03 

POLSs 40   --   12    7.83E-03 

VSDKs --   861   12    1.16E-03 

POLSs 45   --   10    7.60E-03 

VSDKs --   1080   10   9.75E-04 

 
Table 3: Results for the compression algorithms used for the raw data polygonal image.  

 
 Method  𝒑 𝑴 ⌊𝑪𝑹⌋     MSE 

POLSs 10   --   97   3.21E-04 

VSDKs --   66   97    3.80E-04 

POLSs 15   --   47   2.93E-04 
VSDKs --   136   47    3.99E-04 

POLSs 20   --   27   2.82E-04 

VSDKs --   231   27    2.93E-04 

POLSs 25   --   18    2.54E-04 

VSDKs --   351   18    3.25E-04 

POLSs 30   --   13   2.28E-04 
VSDKs --   495   13   2.88E-04 

POLSs 35   --   9    2.27E-04 

VSDKs --   662   9    2.75E-04 

POLSs 40   --   7    2.17E-04 

VSDKs --   854   7    2.68E-04 

POLSs 45  --   6    2.29E-04 
VSDKs --   1059   6   2.52E-04 

 
Table 4: Results for the compression algorithms used for the simulated data polygonal image.  

 

 

To have a graphical feedback, in Figures 8 and 9 we plot the reconstruction of the two grids 
for different polynomial degrees. For the raw data grid, we can note that the Gibbs 
phenomenon is evident for large number of data sites. Such effect is mitigated via VSDKs. For 
the simulated data image instead, smooth approximations via POLSs are preferable. 
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Figure 8: Reconstruction of the raw data polygonal image via POLSs and VSDKs interpolation (left and 

right, respectively) for 𝑝 = 15 and 45 (top and bottom respectively). 

 

 

Finally, in Figures 10 and 11 we show the empirical variograms.  We should note from the two 
frames on the top of Figures Figures 10 and 11 that the empirical variograms computed on a 
few extracted Caratheodory-Tchakaloff points (with the known values at those points) are 
similar to the one computed for the original image, even if we register a modest loss in the 
space correlation.  Concerning the other variograms, they are computed on the reconstructed 
images in the same framework of Figures 8 and 9. As expected, both POLSs and VSDKs 
maintain the spatial correlation. 
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Figure 9:  Reconstruction of the simulated data polygonal image via POLSs and VSDKs interpolation (left 

and right, respectively) for 𝑝 = 15 and 45 (top and bottom respectively). 
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Figure 10: his figure refers to the polygonal raw data image. From left to right, top to bottom. 1) The 
variogram of the original image. 2) The variogram on a few extracted Caratheodory-Tchakaloff points for 

p=45 (with the known values at those points). 3) The variogram of the reconstructed image with POLSs 
(p=45). 4) The variogram of the reconstructed image with VSDKs (p=45). 

 
 

Figure 10: his figure refers to the polygonal raw data image. From left to right, top to bottom. 1) The 
variogram of the original image. 2) The variogram on a few extracted Caratheodory-Tchakaloff points for 

p=45 (with the known values at those points). 3) The variogram of the reconstructed image with POLSs 
(p=45). 4) The variogram of the reconstructed image with VSDKs (p=45). 

Simulations for time predictions 
 
In this section we point out how we can produce efficient prediction on the dynamics of the 
considered quantities. The following  soil moisture products are processed by the ParFlow 
system. We take 91 data takes sampled at different time steps (1h) between 10/04/19 and  
12/04/19. During that period a perturbation passed over Greece and thus we focus on that 
area. The training set consists of the first 90 images and pixel by pixel one could perform both 
SVR and EnKF. But taking all pixels would be truly inefficient. Thus, we only take into account 
1891 Padova points and we reconstruct the final figure via VSDKs.  
 
The original image at the 91st time step and related variogram are plotted in Figure 11. 
The graphical results of our prediction via both SVR and EnKF are displayed in Figure 12 and 
for both methods the MSE is about 2𝐸 − 03.  
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Figure 11: The original image whose size is 206 ×  151. 

 
Figure 12: The image predicted via SVR and EnKF (top, left and right respectively).  

 

Conclusions 
 
In this work we presented an effective tool for data compression. Points are extracted via 
approximation techniques which gained much attention in the last years. Because of the 
specific application considered here, i.e. approximating satellite data, aside POLSs a robust 
reconstruction scheme, based on VSDKs which take advantage of reducing the Gibbs 
phenomenon, has been extensively studied and tested. Numerical results are promising and 
show that, provided the field is smooth, POLSs are preferable. Otherwise switching to VSDKs 
is preferable. Finally, we also provided promising examples devoted to investigate the 
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dynamics of the considered quantities. Work in progress consists in investigating data fusion 
algorithms for effectively extract features from the given data products.  
 

Appendix: Error bounds  
 
To introduce later error bounds for VSDKs, we start with standard kernels by defining the 
space (Wendland, 2005) 
 

𝐻𝐾  =   span{𝐾(∙, 𝑡),    𝑡 ∈ Ω}, 
 
with an associated bilinear form (∙,∙)𝐻 that makes 𝐻𝐾   an inner product space with 
reproducing kernel 𝐾; see (Wendland, 2005). The native space 𝑁𝐾  of the kernel 𝐾 is then 

defined as the completion of 𝐻𝐾  with respect to the norm || ∙ ||𝐻  =  √(∙,∙)𝐻.  

 
The power function 𝑃𝐾,𝑇𝑀will help us to find an upper bound for the interpolation error. 

Setting 
 

𝜅𝑇(𝑡)  =  (𝐾(𝑡, 𝑡1), … , 𝐾(𝑡, 𝑡𝑀)), 

 
we have (Fasshauer & McCourt, 2015) 
 

𝑃𝐾,𝑇𝑀 =  ||𝐾(∙, 𝑡) − 𝜅
𝑇(𝑡)𝐴−1 𝜅(𝑡)||𝑁𝐾 =  𝐾(𝑡, 𝑡) − 𝜅𝑇(𝑡)𝐴−1 𝜅(𝑡),  

 
where the last equality is a consequence of the reproducing property (Wendland, 2005), i.e.  
 

(𝑓, 𝐾(∙, 𝑡))
𝑁𝐾
 =  𝑓(𝑡),     𝑓 ∈  𝑁𝐾. 

 
Finally, we need to introduce the so-called  fill distance, see  (Fasshauer, 2007)  
 

ℎ𝑇𝑀 = sup
𝑡∈Ω

min
𝑡𝑘∈𝑇𝑀

||t − tk||2.  

 
It is an indicator of how Ω is filled out by points and is related to error bounds (refer e.g. to 
Theorem 14.5 in (Fasshauer, 2007) p. 121). 
 
We now provide error bounds for VSDKs in terms of the power function 𝑃𝐾𝜓,𝑇𝑀  and fill 

distance; see (De Marchi, et al., 2019). For further details on the native spaces induced by the 
discontinuous kernels we refer the reader to (De Marchi, et al., 2019). In that paper, an error 
bound (more strict than the one reported here for Sobolev kernels) is shown. However, due 
to its technicality, we decide to propose the following and more general one that in particular 
offers a computable error bound. Refer to also to (Fasshauer & McCourt, 2015) for further 
details. 
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Theorem 2.  Assume that there exists a constant 𝛿 (not too large) so that ||𝑓 − 𝑉𝑓||𝑁𝐾𝜓
≤

𝛿||𝑉𝑓||𝑁𝐾𝜓
. Let 𝐾 ∈  𝐶2𝑘((Ω×Σ) ×  (Ω×Σ)) be a strictly positive definite kernel. Then 

there exist positive constants ℎ0 and 𝐶, such that 
 

| 𝑓(𝑡) − 𝑉𝑓(𝑡)| ≤ 𝛿 𝐶 ℎ𝑇̂𝑀
𝑘  √𝐶𝐾(𝑡̂) 𝑓

𝑡𝐴𝜓
−1  𝑓,  

 
provided that 0 < ℎ𝑇̂𝑀 ≤ ℎ0 and 𝑓 ∈  𝑁𝐾𝜓  where 

 

𝐶𝐾(𝑡̂) max
|𝛽|=2𝑘

max
𝑣̂,𝑤̂∈(Ω×Σ)∩𝐵(𝑡̂,𝐶2ℎ𝑇̂𝑀

𝑘 )
|𝐷2

𝛽
𝐾(𝑣̂, 𝑤̂)|, 

 

with 𝐶2 from Theorem 14.4 (Fasshauer, 2007) p. 120,  and where 𝐵(𝑡̂, 𝐶2ℎ𝑇̂𝑀
𝑘 ) denotes the 

ball of  radius 𝐶2ℎ𝑇̂𝑀
𝑘  centered at 𝑡̂. 

 

Proof. In the varying scale setting, the coefficients 𝑐 = 𝐴𝜓
−1 𝑓 are so that 

 
𝑉𝑓(𝑡) = 𝜅𝜓

𝑇 (𝑡)𝐴𝜓
−1 𝑓, 

 
or, equivalently, because of the symmetry of the kernel matrix and because trivially  
 

 𝑉𝑓(𝑡) = 𝑓
𝑇𝐴𝜓

−1 𝜅𝜓(𝑡),                                                (1) 

 
 
Because of the reproducing property, we have that  
 

𝑓𝑇 = ((𝑓, 𝐾𝜓(∙, 𝑡1))
𝑁𝐾𝜓

, … , (𝑓, 𝐾𝜓(∙, 𝑡1𝑀))
𝑁𝐾𝜓

), 

                     = ((𝑓, (𝐾𝜓(∙, 𝑡1),… , 𝐾𝜓(∙, 𝑡𝑀) ))
𝑁𝐾𝜓

= (𝑓, 𝜅𝜓
𝑇 (∙))

𝑁𝐾𝜓

. 

  
By plugging this into (1), we obtain 
 

𝑉𝑓(𝑡) =  (𝑓, 𝜅𝜓
𝑇 (∙))

𝑁𝐾𝜓

𝐴𝜓
−1 𝜅𝜓(𝑡) = (𝑓, 𝜅𝜓

𝑇 (∙)𝐴𝜓
−1 𝜅𝜓(𝑡))

𝑁𝐾𝜓

. 

Thus, 
 

| 𝑓(𝑡) − 𝑉𝑓(𝑡)| ≤ ||𝑓||𝑁𝐾𝜓
||𝐾𝜓(∙, 𝑡) − 𝜅𝜓

𝑇 (∙)𝐴𝜓
−1 𝜅𝜓(𝑡)||𝑁𝐾𝜓,

   

                    = ||𝑓||𝑁𝐾𝜓
||𝐾(∙, 𝑡̂) − 𝜅𝑇(∙)𝐴𝜓

−1 𝜅(𝑡̂)||𝑁𝐾  

                                                           = ||𝑓||𝑁𝐾𝜓
𝑃𝐾,𝑇̂𝑀(𝑡̂).  

 
Then, as well-known, see also Th. 14.5 in (Fasshauer, 2007) 
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𝑃𝐾,𝑇̂𝑀(𝑡̂) ≤ 𝐶 ℎ𝑇̂𝑀
𝑘  √𝐶𝐾(𝑡̂) . 

 
And finally,  
 

| 𝑓(𝑡) − 𝑉𝑓(𝑡)| ≤ 𝛿 𝐶 ℎ𝑇̂𝑀
𝑘  √𝐶𝐾(𝑡̂) 𝑓

𝑡𝐴𝜓
−1  𝑓. 

                               ■ 
 

Of course, we have that ℎ𝑇𝑀
𝑘 ≤ ℎ𝑇̂𝑀

𝑘  and this a drawback for the VSK setting, indeed the error 

decreases according to the fill distance, i.e. according to the number of points if they are 
quasi-uniform.  However, we have an improvement in terms of stability, which is meaningful 
for our purposes of reducing oscillations in the solution. Indeed, also the separation distance, 
which decreases according to the smallest eigenvalue of the kernel matrix, never decreases 
in the VSK setting. 

Appendix: Kalman Filter  
 
To introduce the Ensemble Kalman Filter (EnKF), we need to recall the basic features of the 
Extended Kalman Filter. Let us take a discrete-time nonlinear system with dynamics 
 

𝑠𝑘+1 = 𝑓(𝑠𝑘 , 𝑢𝑘) + 𝑤𝑘 , 
and measurements 
 

𝑙𝑘 = 𝑔(s𝑘) + 𝑣𝑘 , 
 
where in general, 𝑠𝑘 , 𝑤𝑘 ∈  ℝ

𝑑, 𝑢𝑘 ∈ ℝ
𝑝, 𝑙𝑘 , 𝑣𝑘 ∈ ℝ

𝑞. We assume that 𝑤𝑘  and 𝑣𝑘 are 
stationary zero-mean white noise processes with covariance matrices 𝑄𝑘  and 𝑍𝑘, 
respectively. Furthermore, let 𝑠0, 𝑤𝑘  and  𝑣𝑘 be uncorrelated. The scope is to construct 
estimates 𝑠𝑘

𝑎  of the state 𝑠𝑘  using the measurements so that  
 

tr(E[𝛿𝑘
𝑎(𝛿𝑘

𝑎)𝑡]),   
 
is minimized, where 𝛿𝑘

𝑎 = 𝑠𝑘 − 𝑠𝑘
𝑎. 

When the dynamics is linear, i.e.   
 

𝑓(𝑠𝑘 , 𝑢𝑘) = 𝐵𝑘𝑠𝑘 + 𝐶𝑘𝑢𝑘 . 
 

𝑔(𝑠𝑘) = 𝐷𝑘𝑠𝑘 . 
 
we define the analysis state error covariance 𝑃𝑘

𝑎 ∈  ℝ𝑑×𝑑  as 𝑃𝑘
𝑎 = E[𝛿𝑘

𝑎(𝛿𝑘
𝑎)𝑇].  Furthermore, 

we introduce the forecast state error covariance  𝑃𝑘
𝑓
∈  ℝ𝑑×𝑑, defined by 

 

𝑃𝑘
𝑓
=  = E [𝛿𝑘

𝑓
(𝛿𝑘

𝑓
)
𝑇
], 
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and  
 

𝑃𝑠,𝑙𝑘
𝑓

 = E [𝛿𝑘
𝑓
(𝑙𝑘 − 𝑙𝑘

𝑓
)
𝑇
] = 𝑃𝑘

𝑓
𝐷𝑘
𝑇 ,          𝑃𝑙,𝑙𝑘

𝑓
 = E [(𝑙𝑘 − 𝑙𝑘

𝑓
)(𝑙𝑘 − 𝑙𝑘

𝑓
)
𝑇
] = 𝐷𝑘𝑃𝑘

𝑓
𝐷𝑘
𝑇 + 𝑍𝑘 , 

 

where  𝑙𝑘
𝑓
= 𝐷𝑠𝑘

𝑓
, 𝛿𝑘

𝑓
= 𝑙𝑘 − 𝑙𝑘

𝑓
.  Then, the Kalman filter iterations can be summarized in the 

following two steps: 

1. Analysis step:  

𝐾𝑘 =  𝑃𝑠,𝑙𝑘
𝑓
(𝑃𝑙,𝑙𝑘

𝑓
)
−1
, 𝑃𝑘

𝑎 = (𝐼 − 𝐾𝑘𝐷𝑘)𝑃𝑓
𝑘, 𝑠𝑘

𝑎 = 𝑠𝑘
𝑓
+ 𝐾𝑘(𝑙𝑘 − 𝐷𝑘𝑠𝑘

𝑓
). 

2. Forecast step:  

𝑠𝑘+1
𝑓

=  𝐵𝑘𝑠𝑘
𝑎 + 𝐶𝑘𝑢𝑘 , 𝑃𝑘+1

𝑓
= 𝐵𝑘𝑃𝑘

𝑎𝐵𝑘
𝑇 + 𝑄𝑘 . 

In case the dynamics in nonlinear, we drive our attention towards the Extended 
Kalman Filter (EKF), where in the forecast step: 

𝑠𝑘+1
𝑓

=  𝑓(𝑠𝑘
𝑎 , 𝑢𝑘), 𝑃𝑘+1

𝑓
= 𝐵𝑘𝑃𝑘

𝑎𝐵𝑘
𝑇 +𝑄𝑘 , 

and for the data assimilation we have: 
 

𝑠𝑘
𝑎 = 𝑠𝑘

𝑓
+ 𝐾𝑘 (𝑙𝑘 − 𝑔(𝑠𝑘

𝑓
)) , 𝐾𝑘 = 𝑃𝑘

𝑓
𝐷𝑘
𝑇(𝐷𝑘𝑃𝑘

𝑓
𝐷𝑘
𝑇 + 𝑍𝑘)

−1
,

𝑃𝑘
𝑎 = 𝑃𝑘

𝑓
− 𝑃𝑘

𝑓
𝐷𝑘
𝑇(𝐷𝑘𝑃𝑘

𝑓
𝐷𝑘
𝑇 + 𝑍𝑘)

−1
𝐷𝑘𝑃𝑘

𝑓
, 

 
where  𝐵𝑘 ∈  ℝ𝑑×𝑑  and 𝐷𝑘 ∈  ℝ

𝑞×𝑑 are given by  
 

𝐵𝑘 =
𝜕𝑓(𝑠, 𝑢)

𝜕𝑠 
|𝑠=𝑠𝑘

𝑎 , 𝐷𝑘 =
𝜕𝑔(𝑠)

𝜕𝑠 
|𝑠=𝑠𝑘

𝑎 . 

 
While when the dynamics is linear the Kalman filter produces optimal estimates of the state, 
the EnKF for non-linear model is a suboptimal estimator, where the statistical errors are 

predicted by producing an ensemble 𝑆𝑘
𝑓
= (𝑠𝑘

𝑓1 , … , 𝑆𝑘
𝑓𝑟)

𝑇
 and 𝑓𝑖 refers to the 𝑖 −th forecast 

ensemble member. Then, we define the ensemble mean 𝑠̅𝑘
𝑓
∈ ℝ𝑑  as  

 

𝑠̅𝑘
𝑓
=
1

𝑟
 ∑𝑠𝑘

𝑓𝑖

𝑟

𝑖=1

. 

 

To approximate the state 𝑠𝑘, we first introduce the ensemble error matrix 𝑆𝑘
𝑓
∈  ℝ𝑑×𝑟  

 

𝑆𝑘
𝑓
= [𝑡𝑘

𝑓1 − 𝑡𝑘̅
𝑓
, … , 𝑡𝑘

𝑓𝑟 − 𝑡𝑘̅
𝑓
], 

 

and the ensemble of output error 𝑆𝑙𝑘
𝑎 ∈  ℝ𝑑×𝑟  
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𝑆𝑙𝑘
𝑎 = [𝑙𝑘

𝑓1 − 𝑙 ̅𝑘
𝑓
, … , 𝑙𝑘

𝑓𝑟 − 𝑙 ̅𝑘
𝑓
]. 

 

Taking into account the notation previously introduced we approximate 𝑃𝑘
𝑓

by 𝑃̂𝑘
𝑓

, 𝑃𝑡,𝑙𝑘
𝑓

by 

𝑃̂𝑡,𝑙𝑘
𝑓

and 𝑃𝑙,𝑙𝑘
𝑓

by 𝑃̂𝑙,𝑙𝑘
𝑓

, with  

 

𝑃̂𝑘
𝑓
=

1

𝑟 − 1
𝑆𝑘
𝑓
(𝑆𝑘

𝑓
)
𝑇
, 𝑃̂𝑡,𝑙𝑘

𝑓
=

1

𝑟 − 1
𝑆𝑘
𝑓
(𝑆𝑙𝑘

𝑓
)
𝑇
, 𝑃̂𝑙,𝑙𝑘

𝑓
=

1

𝑟 − 1
𝑆𝑙𝑘
𝑓
(𝑆𝑙𝑘

𝑓
)
𝑇
. 

 
Therefore, the spread of the ensemble members around the mean is the error between best 
estimate and actual state, while we can see the ensemble mean as the best forecast estimate 
of the state.  Then, for each 𝑖 = 1,… , 𝑟, we define 
 

𝑠𝑘
𝑎𝑖 = 𝑠𝑘

𝑓𝑖 + 𝐾 (𝑙𝑘
𝑖 − 𝑔(𝑠𝑘

𝑓𝑖)), 

 

and the perturbed observations 𝑙𝑘
𝑖 =  𝑙𝑘 + 𝑣𝑘

𝑖 , where 𝑣𝑘
𝑖  is a zero mean random variable with 

normal distribution and covariance 𝑍𝑘. Then, letting  
 

𝑠̅𝑘
𝑎 =

1

𝑟
 ∑𝑠𝑘

𝑎𝑖

𝑟

𝑖=1

. 

 
the analysis error covariance 𝑃𝑘

𝑎 is approximated by  
 

𝑃̂𝑘
𝑎 =

1

𝑟 − 1
𝑆𝑘
𝑎(𝑆𝑘

𝑎)𝑇 ,      with      𝑆𝑘
𝑎 = [𝑟𝑘

𝑎1 − 𝑟̅𝑘
𝑎, … , 𝑟𝑘

𝑎𝑟 − 𝑠̅𝑘
𝑎]. 

 

Finally, in agreement with the linear Kalman filter, we get  𝑠𝑘+1
𝑓𝑖 = 𝑓(𝑠𝑘

𝑎𝑖 , 𝑢𝑘) + 𝑤𝑘
𝑖 , where 𝑤𝑘

𝑖  

are from a normal distribution with zero average and covariance  𝑄𝑘. 
 

After introducing 𝐾̂𝑘 = 𝑃̂𝑠,𝑙𝑘
𝑓
(𝑃̂𝑙,𝑙𝑘

𝑓
)
−1

, we summarize the two main steps as follows:   

1. Analysis step:  

𝑠𝑘
𝑎𝑖 =  𝑠𝑘

𝑓𝑖 +𝐾𝑘 (𝑙𝑘 + 𝑣𝑘
𝑖 − 𝑔(𝑠𝑘

𝑓𝑖)). 

2. Forecast step:  

𝑠𝑘+1
𝑓𝑖 =  𝑓(𝑠𝑘

𝑎𝑖 + 𝑣𝑘
𝑖 ). 

In our case, the model is constructed via POLSs or VSDKs on the reduced number of basis, as 
explained before. Then, we apply the EnKF on this reduced number of points. In this way, we 
are able to give reliable and efficient previsions on the future dynamics. 
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